4 resultados para Energy Engineering and Power Technology

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this article is to analyse and evaluate the economical, energetic and environmental impacts of the increasing penetration of renewable energies and electrical vehicles in isolated systems, such as Terceira Island in Azores and Madeira Island. Given the fact that the islands are extremely dependent on the importation of fossil fuels - not only for the production of energy, but also for the transportation’s sector – it’s intended to analyse how it is possible to reduce that dependency and determine the resultant reduction of pollutant gas emissions. Different settings have been analysed - with and without the penetration of EVs. The Terceira Island is an interesting case study, where EVs charging during off-peak hours could allow an increase in geothermal power, limited by the valley of power demand. The percentage of renewable energy in the electric power mix could reach the 74% in 2030 while at the same time, it is possible to reduce the emissions of pollutant gases in 45% and the purchase of fossil fuels in 44%. In Madeira, apart from wind, solar and small hydro power, there are not so many endogenous resources and the Island’s emission factor cannot be so reduced as in Terceira. Although, it is possible to reduce fossil fuels imports and emissions in 1.8% in 2030 when compared with a BAU scenario with a 14% of the LD fleet composed by EVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. This research is concerned with studying the potential impacts on the electric utilities of large-scale adoption of plug-in electric vehicles from the perspective of electricity demand, fossil fuels use, CO2 emissions and energy costs. Simulations were applied to the Portuguese case study in order to analyze what would be the optimal recharge profile and EV penetration in an energy-oriented, an emissions-oriented and a cost-oriented objective. The objectives considered were: The leveling of load profiles, minimization of daily emissions and minimization of daily wholesale costs. Almost all solutions point to an off-peak recharge and a 50% reduction in daily wholesale costs can be verified from a peak recharge scenario to an off-peak recharge for a 2 million EVs in 2020. A 15% improvement in the daily total wholesale costs can be verified in the costs minimization objective when compared with the off-peak scenario result.