4 resultados para Energy Density
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We characterize the elastic contribution to the surface free energy of a nematic liquid crystal in the presence of a sawtooth substrate. Our findings are based on numerical minimization of the Landau-de Gennes model and analytical calculations on the Frank-Oseen theory. The nucleation of disclination lines (characterized by non-half-integer winding numbers) in the wedges and apexes of the substrate induces a leading order proportional to q ln q to the elastic contribution to the surface free-energy density, with q being the wave number associated with the substrate periodicity.
Resumo:
In this work, alpha-Co(OH)(2) is electrodeposited onto carbon nanofoam forming a composite electrode operating in a potential window of 2 V in aqueous medium. Prior to electrodeposition, the carbon nanofoam substrate is subjected to a functionalization process, which leads to an increase of about 40% in its specific capacitance value. Formation of cobalt hydroxide clusters onto the functionalized carbon nanofoam by pulse electrodeposition further enhances the specific capacitance of the electrode. The combination of these factors with an enlarged working potential window, results in a material with specific capacitance close to 300 F g(-1) at current density of 1 A g(-1), considering the total mass loading of the composite. This suggests the potential application of the prepared composites in high energy density electrochemical supercapacitors. (c) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper is on the self-scheduling for a power producer taking part in day-ahead joint energy and spinning reserve markets and aiming at a short-term coordination of wind power plants with concentrated solar power plants having thermal energy storage. The short-term coordination is formulated as a mixed-integer linear programming problem given as the maximization of profit subjected to technical operation constraints, including the ones related to a transmission line. Probability density functions are used to model the variability of the hourly wind speed and the solar irradiation in regard to a negative correlation. Case studies based on an Iberian Peninsula wind and concentrated solar power plants are presented, providing the optimal energy and spinning reserve for the short-term self-scheduling in order to unveil the coordination benefits and synergies between wind and solar resources. Results and sensitivity analysis are in favour of the coordination, showing an increase on profit, allowing for spinning reserve, reducing the need for curtailment, increasing the transmission line capacity factor. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the behavior of a patchy particle model close to a hard-wall via Monte Carlo simulation and density functional theory (DFT). Two DFT approaches, based on the homogeneous and inhomogeneous versions of Wertheim's first order perturbation theory for the association free energy are used. We evaluate, by simulation and theory, the equilibrium bulk phase diagram of the fluid and analyze the surface properties for two isochores, one of which is close to the liquid side of the gas-liquid coexistence curve. We find that the density profile near the wall crosses over from a typical high-temperature adsorption profile to a low-temperature desorption one, for the isochore close to coexistence. We relate this behavior to the properties of the bulk network liquid and find that the theoretical descriptions are reasonably accurate in this regime. At very low temperatures, however, an almost fully bonded network is formed, and the simulations reveal a second adsorption regime which is not captured by DFT. We trace this failure to the neglect of orientational correlations of the particles, which are found to exhibit surface induced orientational order in this regime.