5 resultados para Electronic Trading
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The potential of the electrocardiographic (ECG) signal as a biometric trait has been ascertained in the literature over the past decade. The inherent characteristics of the ECG make it an interesting biometric modality, given its universality, intrinsic aliveness detection, continuous availability, and inbuilt hidden nature. These properties enable the development of novel applications, where non-intrusive and continuous authentication are critical factors. Examples include, among others, electronic trading platforms, the gaming industry, and the auto industry, in particular for car sharing programs and fleet management solutions. However, there are still some challenges to overcome in order to make the ECG a widely accepted biometric. In particular, the questions of uniqueness (inter-subject variability) and permanence over time (intra-subject variability) are still largely unanswered. In this paper we focus on the uniqueness question, presenting a preliminary study of our biometric recognition system, testing it on a database encompassing 618 subjects. We also performed tests with subsets of this population. The results reinforce that the ECG is a viable trait for biometrics, having obtained an Equal Error Rate of 9.01% and an Error of Identification of 15.64% for the entire test population.
Resumo:
This paper describes an assessment of the impact of the enforcement of the European carbon dioxide (CO2) emissions trading scheme on the Portuguese chemical industry, based on cost structure, CO2 emissions, electricity consumption and allocated allowances data from a survey to four Portuguese representative units of the chemical industry sector, and considering scenarios that allow the estimation of increases on both direct and indirect production costs. These estimated cost increases were also compared with similar data from other European Industries, found in the references and with conclusions from simulation studies. Thus, it was possible to ascertain the impact of buying extra CO2 emission permits, which could be considered as limited. It was also found that this impact is somewhat lower than the impacts for other industrial sectors.
Resumo:
In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The electricity industry throughout the world, which has long been dominated by vertically integrated utilities, has experienced major changes. Deregulation, unbundling, wholesale and retail wheeling, and real-time pricing were abstract concepts a few years ago. Today market forces drive the price of electricity and reduce the net cost through increased competition. As power markets continue to evolve, there is a growing need for advanced modeling approaches. This article addresses the challenge of maximizing the profit (or return) of power producers through the optimization of their share of customers. Power producers have fixed production marginal costs and decide the quantity of energy to sell in both day-ahead markets and a set of target clients, by negotiating bilateral contracts involving a three-rate tariff. Producers sell energy by considering the prices of a reference week and five different types of clients with specific load profiles. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.
Resumo:
The electricity industry throughout the world, which has long been dominated by vertically integrated utilities, has experienced major changes. Deregulation, unbundling, wholesale and retail wheeling, and real-time pricing were abstract concepts a few years ago. Today market forces drive the price of electricity and reduce the net cost through increased competition. As power markets continue to evolve, there is a growing need for advanced modeling approaches. This article addresses the challenge of maximizing the profit (or return) of power producers through the optimization of their share of customers. Power producers have fixed production marginal costs and decide the quantity of energy to sell in both day-ahead markets and a set of target clients, by negotiating bilateral contracts involving a three-rate tariff. Producers sell energy by considering the prices of a reference week and five different types of clients with specific load profiles. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.