9 resultados para Eigenvalue of a graph
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We introduce the notions of equilibrium distribution and time of convergence in discrete non-autonomous graphs. Under some conditions we give an estimate to the convergence time to the equilibrium distribution using the second largest eigenvalue of some matrices associated with the system.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Trabalho de projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Since collaborative networked organisations are usually formed by independent and heterogeneous entities, it is natural that each member holds his own set of values, and that conflicts among partners might emerge because of some misalignment of values. In contrast, it is often stated in literature that the alignment between the value systems of members involved in collaborative processes is a prerequisite for successful co-working. As a result, the issue of core value alignment in collaborative networks started to attract attention. However, methods to analyse such alignment are lacking mainly because the concept of 'alignment' in this context is still ill defined and shows a multifaceted nature. As a contribution to the area, this article introduces an approach based on causal models and graph theory for the analysis of core value alignment in collaborative networks. The potential application of the approach is then discussed in the virtual organisations' breeding environment context.
Resumo:
Topology optimization consists in finding the spatial distribution of a given total volume of material for the resulting structure to have some optimal property, for instance, maximization of structural stiffness or maximization of the fundamental eigenfrequency. In this paper a Genetic Algorithm (GA) employing a representation method based on trees is developed to generate initial feasible individuals that remain feasible upon crossover and mutation and as such do not require any repairing operator to ensure feasibility. Several application examples are studied involving the topology optimization of structures where the objective functions is the maximization of the stiffness and the maximization of the first and the second eigenfrequencies of a plate, all cases having a prescribed material volume constraint.
Resumo:
Preliminary version
Resumo:
The advances made in channel-capacity codes, such as turbo codes and low-density parity-check (LDPC) codes, have played a major role in the emerging distributed source coding paradigm. LDPC codes can be easily adapted to new source coding strategies due to their natural representation as bipartite graphs and the use of quasi-optimal decoding algorithms, such as belief propagation. This paper tackles a relevant scenario in distributedvideo coding: lossy source coding when multiple side information (SI) hypotheses are available at the decoder, each one correlated with the source according to different correlation noise channels. Thus, it is proposed to exploit multiple SI hypotheses through an efficient joint decoding technique withmultiple LDPC syndrome decoders that exchange information to obtain coding efficiency improvements. At the decoder side, the multiple SI hypotheses are created with motion compensated frame interpolation and fused together in a novel iterative LDPC based Slepian-Wolf decoding algorithm. With the creation of multiple SI hypotheses and the proposed decoding algorithm, bitrate savings up to 8.0% are obtained for similar decoded quality.
Resumo:
Fluorescence confocal microscopy (FCM) is now one of the most important tools in biomedicine research. In fact, it makes it possible to accurately study the dynamic processes occurring inside the cell and its nucleus by following the motion of fluorescent molecules over time. Due to the small amount of acquired radiation and the huge optical and electronics amplification, the FCM images are usually corrupted by a severe type of Poisson noise. This noise may be even more damaging when very low intensity incident radiation is used to avoid phototoxicity. In this paper, a Bayesian algorithm is proposed to remove the Poisson intensity dependent noise corrupting the FCM image sequences. The observations are organized in a 3-D tensor where each plane is one of the images acquired along the time of a cell nucleus using the fluorescence loss in photobleaching (FLIP) technique. The method removes simultaneously the noise by considering different spatial and temporal correlations. This is accomplished by using an anisotropic 3-D filter that may be separately tuned in space and in time dimensions. Tests using synthetic and real data are described and presented to illustrate the application of the algorithm. A comparison with several state-of-the-art algorithms is also presented.
Resumo:
In this work, we associate a p-periodic nonautonomous graph to each p-periodic nonautonomous Lorenz system with finite critical orbits. We develop Perron-Frobenius theory for nonautonomous graphs and use it to calculate their entropy. Finally, we prove that the topological entropy of a p-periodic nonautonomous Lorenz system is equal to the entropy of its associated nonautonomous graph.