36 resultados para EXOTIC GALILEAN SYMMETRY

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that type I seesaw models based on the standard model Lagrangian extended with three heavy Majorana right-handed fields do not have leptogenesis in leading order, if the symmetries of mass matrices are also the residual symmetry of the Lagrangian. In particular, flavor models that lead to a mass-independent leptonic mixing have a vanishing leptogenesis CP asymmetry. Based on symmetry arguments, we prove that in these models the Dirac-neutrino Yukawa coupling combinations relevant for leptogenesis are diagonal in the physical basis where the charged leptons and heavy Majorana neutrinos are diagonal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth experimented in recent years in both the variety and volume of structured products implies that banks and other financial institutions have become increasingly exposed to model risk. In this article we focus on the model risk associated with the local volatility (LV) model and with the Variance Gamma (VG) model. The results show that the LV model performs better than the VG model in terms of its ability to match the market prices of European options. Nevertheless, both models are subject to significant pricing errors when compared with the stochastic volatility framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea of grand unification in a minimal supersymmetric SU(5) x SU(5) framework is revisited. It is shown that the unification of gauge couplings into a unique coupling constant can be achieved at a high-energy scale compatible with proton decay constraints. This requires the addition of minimal particle content at intermediate energy scales. In particular, the introduction of the SU(2)(L) triplets belonging to the (15, 1)+((15) over bar, 1) representations, as well as of the scalar triplet Sigma(3) and octet Sigma(8) in the (24, 1) representation, turns out to be crucial for unification. The masses of these intermediate particles can vary over a wide range, and even lie in the TeV region. In contrast, the exotic vector-like fermions must be heavy enough and have masses above 10(10) GeV. We also show that, if the SU(5) x SU(5) theory is embedded into a heterotic string scenario, it is not possible to achieve gauge coupling unification with gravity at the perturbative string scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze generalized CP symmetries of two-Higgs doublet models, extending them from the scalar to the fermion sector of the theory. We show that, other than the usual CP transformation, there is only one of those symmetries which does not imply massless charged fermions. That single model which accommodates a fermionic mass spectrum compatible with experimental data possesses a remarkable feature. Through a soft breaking of the symmetry it displays a new type of spontaneous CP violation, which does not occur in the scalar sector responsible for the symmetry breaking mechanism but, rather, in the fermion sector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is research oriented and pretends to contribute toward giving empirical evidence about how students develop their reasoning and how they achieved to a proof construction in school context. Its main theme is epistemology. It describes the way in which four students in 9th Grade explored a task related with the discovery of symmetry axes in various geometric figures. The proof constructed by students had essentially an explaining function and it was related with the symmetry axes of regular polygons. The teacher’s role in meaning negotiation of the proof and its need is described through illustrative episodes. The paper presents part of a study which purpose is to analyse the nature of mathematical proof in classroom, its role and the nature of the relationship between the construction of a proof and the social interactions. Assuming a social perspective, attention is focussed on the social construction of knowledge and on the structuring resources that shape mathematical experience. The study’s methodology has an interpretative nature. One outcome of the study discussed here is that students develop first a practical understanding with no awareness of the reasons founding mathematical statements and after a theoretical one leading them to a proof elaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strange quark matter hypothesis is one of the most exciting speculations of the XX Century Physics. If this hypothesis is correct, the ground state of the matter would be the strange matter, which could form the core of compact objects like neutron stars or even more exotic objects like quarks stars. Due to the high-density and low-temperature regime in these stars, the interaction between quarks through gluon exchange could favor the appearance of a color superconducting state, significantl modifying the equation of state of the system. In this paper we present a general overview of this Subject, taking also into account the effect of strong magnetic field in the quark stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The anisotropy of the pressures is discussed. The mass-radius relation for such stars is also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LHC has found hints for a Higgs particle of 125 GeV. We investigate the possibility that such a particle is a mixture of scalar and pseudoscalar states. For definiteness, we concentrate on a two-Higgs doublet model with explicit CP violation and soft Z(2) violation. Including all Higgs production mechanisms, we determine the current constraints obtained by comparing h -> yy with h -> VV*, and comment on the information which can be gained by measurements of h -> b (b) over bar. We find bounds vertical bar s(2)vertical bar less than or similar to 0.83 at one sigma, where vertical bar s(2)vertical bar = 0 (vertical bar s(2)vertical bar = 1) corresponds to a pure scalar (pure pseudoscalar) state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the implications of the searches based on H -> tau(+)tau-by the ATLAS and CMS collaborations on the parameter space of the two-Higgs-doublet model (2HDM). In the 2HDM, the scalars can decay into a tau pair with a branching ratio larger than the SM one, leading to constraints on the 2HDM parameter space. We show that in model II, values of tan beta > 1.8 are definitively excluded if the pseudoscalar is in the mass range 110 GeV < m(A) < 145 GeV. We have also discussed the implications for the 2HDM of the recent dimuon search by the ATLAS collaboration for a CP-odd scalar in the mass range 4-12 GeV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a simple extension of the Standard Model by adding two Higgs triplets and a complex scalar singlet to its particle content. In this framework, the CP symmetry is spontaneously broken at high energies by the complex vacuum expectation value of the scalar singlet. Such a breaking leads to leptonic CP violation at low energies. The model also exhibits an A(4) X Z(4) flavor symmetry which, after being spontaneously broken at a high-energy scale, yields a tribimaximal pattern in the lepton sector. We consider small perturbations around the tribimaximal vacuum alignment condition in order to generate nonzero values of theta(13), as required by the latest neutrino oscillation data. It is shown that the value of theta(13) recently measured by the Daya Bay Reactor Neutrino Experiment can be accommodated in our framework together with large Dirac-type CP violation. We also address the viability of leptogenesis in our model through the out-of-equilibrium decays of the Higgs triplets. In particular, the CP asymmetries in the triplet decays into two leptons are computed and it is shown that the effective leptogenesis and low-energy CP-violating phases are directly linked.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a two-Higgs-doublet model, with a Z(3) symmetry, in which CP violation originates solely in a soft (dimension-2) coupling in the scalar potential, and reveals itself solely in the CKM (quark mixing) matrix. In particular, in the mass basis the Yukawa interactions of the neutral scalars are all real. The model has only eleven parameters to fit the six quark masses and the four independent CKM-matrix observables. We find regions of parameter space in which the flavour-changing neutral couplings are so suppressed that they allow the scalars to be no heavier than a few hundred GeV. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We classify all possible implementations of an Abelian symmetry in the two-Higgs-doublet model with fermions. We identify those symmetries which are consistent with nonvanishing quark masses and a Cabibbo-Kobayashi-Maskawa quark-mixing matrix (CKM), which is not block-diagonal. Our analysis takes us from a plethora of possibilities down to 246 relevant cases, requiring only 34 distinct matrix forms. We show that applying Z(n) with n >= 4 to the scalar sector leads to a continuous U(1) symmetry in the whole Lagrangian. Finally, we address the possibilities of spontaneous CP violation and of natural suppression of the flavor-changing neutral currents. We explain why our work is relevant even for non-Abelian symmetries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized colorflavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.