5 resultados para ERROR-CORRECTION MODEL
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Hoje em dia, há cada vez mais informação audiovisual e as transmissões ou ficheiros multimédia podem ser partilhadas com facilidade e eficiência. No entanto, a adulteração de conteúdos vídeo, como informação financeira, notícias ou sessões de videoconferência utilizadas num tribunal, pode ter graves consequências devido à importância desse tipo de informação. Surge então, a necessidade de assegurar a autenticidade e a integridade da informação audiovisual. Nesta dissertação é proposto um sistema de autenticação de vídeo H.264/Advanced Video Coding (AVC), denominado Autenticação de Fluxos utilizando Projecções Aleatórias (AFPA), cujos procedimentos de autenticação, são realizados ao nível de cada imagem do vídeo. Este esquema permite um tipo de autenticação mais flexível, pois permite definir um limite máximo de modificações entre duas imagens. Para efectuar autenticação é utilizada uma nova técnica de autenticação de imagens, que combina a utilização de projecções aleatórias com um mecanismo de correcção de erros nos dados. Assim é possível autenticar cada imagem do vídeo, com um conjunto reduzido de bits de paridade da respectiva projecção aleatória. Como a informação de vídeo é tipicamente, transportada por protocolos não fiáveis pode sofrer perdas de pacotes. De forma a reduzir o efeito das perdas de pacotes, na qualidade do vídeo e na taxa de autenticação, é utilizada Unequal Error Protection (UEP). Para validação e comparação dos resultados implementou-se um sistema clássico que autentica fluxos de vídeo de forma típica, ou seja, recorrendo a assinaturas digitais e códigos de hash. Ambos os esquemas foram avaliados, relativamente ao overhead introduzido e da taxa de autenticação. Os resultados mostram que o sistema AFPA, utilizando um vídeo com qualidade elevada, reduz o overhead de autenticação em quatro vezes relativamente ao esquema que utiliza assinaturas digitais e códigos de hash.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.
Resumo:
Crossed classification models are applied in many investigations taking in consideration the existence of interaction between all factors or, in alternative, excluding all interactions, and in this case only the effects and the error term are considered. In this work we use commutative Jordan algebras in the study of the algebraic structure of these designs and we use them to obtain similar designs where only some of the interactions are considered. We finish presenting the expressions of the variance componentes estimators.
Resumo:
The SiC optical processor for error detection and correction is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Data shows that the background act as selector that pick one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as exclusive OR (EXOR) and three bit addition are demonstrated optically with a combination of such switching devices, showing that when one or all of the inputs are present the output will be amplified, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed by use of the four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all optical processor for error detection and correction and then, provide an experimental demonstration of this fault tolerant reversible system, in emerging nanotechnology.