9 resultados para ENGINEERING ANALYSIS
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The bending of simply supported composite plates is analyzed using a direct collocation meshless numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-objective optimization method is applied. In addition, the method optimizes the shape parameter in radial basis functions. The optimization algorithm was able to find good solutions for a large variety of nodes distribution.
Resumo:
Meshless methods are used for their capability of producing excellent solutions without requiring a mesh, avoiding mesh related problems encountered in other numerical methods, such as finite elements. However, node placement is still an open question, specially in strong form collocation meshless methods. The number of used nodes can have a big influence on matrix size and therefore produce ill-conditioned matrices. In order to optimize node position and number, a direct multisearch technique for multiobjective optimization is used to optimize node distribution in the global collocation method using radial basis functions. The optimization method is applied to the bending of isotropic simply supported plates. Using as a starting condition a uniformly distributed grid, results show that the method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The Wyner-Ziv video coding (WZVC) rate distortion performance is highly dependent on the quality of the side information, an estimation of the original frame, created at the decoder. This paper, characterizes the WZVC efficiency when motion compensated frame interpolation (MCFI) techniques are used to generate the side information, a difficult problem in WZVC especially because the decoder only has available some reference decoded frames. The proposed WZVC compression efficiency rate model relates the power spectral of the estimation error to the accuracy of the MCFI motion field. Then, some interesting conclusions may be derived related to the impact of the motion field smoothness and the correlation to the true motion trajectories on the compression performance.
Resumo:
As wind power generation undergoes rapid growth, lightning and overvoltage incidents involving wind power plants have come to be regarded as a serious problem. Firstly, lightning location systems are discussed, as well as important parameters regarding lightning protection. Also, this paper presents a case study, based on a wind turbine with an interconnecting transformer, for the study of adequate lightning and overvoltage protection measures. The electromagnetic transients circuit under study is described, and computational results are presented.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.
Resumo:
Master Thesis in Mechanical Engineering field of Maintenance and Production
Resumo:
The scope of this paper is to adapt the standard mean-variance model of Henry Markowitz theory, creating a simulation tool to find the optimal configuration of the portfolio aggregator, calculate its profitability and risk. Currently, there is a deep discussion going on among the power system society about the structure and architecture of the future electric system. In this environment, policy makers and electric utilities find new approaches to access the electricity market; this configures new challenging positions in order to find innovative strategies and methodologies. Decentralized power generation is gaining relevance in liberalized markets, and small and medium size electricity consumers are also become producers (“prosumers”). In this scenario an electric aggregator is an entity that joins a group of electric clients, customers, producers, “prosumers” together as a single purchasing unit to negotiate the purchase and sale of electricity. The aggregator conducts research on electricity prices, contract terms and conditions in order to promote better energy prices for their clients and allows small and medium customers to benefit improved market prices.
Resumo:
This paper addresses the role that decision analysis plays in helping engineers to gain a greater understanding of the problems they face. The need of structured decision analysis is highlighted as well as the use of multiple criteria decision analysis to tackle sustainability issues with emphasis in the use of MACBETH approach. Some insights from a Portuguese Summer Course on engineering for sustainable development are presented namely the students 'and teacher perceptions about the module of decision analysis for sustainability.
Resumo:
Measurements in civil engineering load tests usually require considerable time and complex procedures. Therefore, measurements are usually constrained by the number of sensors resulting in a restricted monitored area. Image processing analysis is an alternative way that enables the measurement of the complete area of interest with a simple and effective setup. In this article photo sequences taken during load displacement tests were captured by a digital camera and processed with image correlation algorithms. Three different image processing algorithms were used with real images taken from tests using specimens of PVC and Plexiglas. The data obtained from the image processing algorithms were also compared with the data from physical sensors. A complete displacement and strain map were obtained. Results show that the accuracy of the measurements obtained by photogrammetry is equivalent to that from the physical sensors but with much less equipment and fewer setup requirements. © 2015Computer-Aided Civil and Infrastructure Engineering.