7 resultados para Dolfin, Daniele, 1656-1729.
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A Auditoria (Inspecção) Tributária tem sido encarada como um corpo estranho à Auditoria Financeira, apesar das características peculiares que lhe são reconhecidas não constituírem justificação para o afastametno conceptual face aos restantes tipos de auditoria. O desenvolvimento de um quadro conceptual para a Auditoria Tributária, aproximando-a, definitivamente, da Auditoria Financeira, criando assim sinergias ao nível dos procedimentos, constitui um passo fundamental para missão que lhe subjaz, sendo que o mote foi dado pela própria Comissão para o Desenvolvimento da Reforma Fiscal ao referir que "(...) os métodos de inspecção devem seguir os procedimentos normalmente usados em auditoria." (CDFR, 1996: §2.5.2). A identificação das suas características peculiares por contraste com os restantes ramos da auditoria, contextualizada por um sistema contabilístico claramente fiscalista, deverá constituir o ponto de partida para a análise de alguns conceitos nucleares, como a caracterização, neste âmbito, da matriz risco ou dos critérios de selecção.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Qualidade e Tecnologias da Saúde.
Resumo:
The conjugation of antigens with ligands of pattern recognition receptors (PRR) is emerging as a promising strategy for the modulation of specific immunity. Here, we describe a new Escherichia coli system for the cloning and expression of heterologous antigens in fusion with the OprI lipoprotein, a TLR ligand from the Pseudomonas aeruginosa outer membrane (OM). Analysis of the OprI expressed by this system reveals a triacylated lipid moiety mainly composed by palmitic acid residues. By offering a tight regulation of expression and allowing for antigen purification by metal affinity chromatography, the new system circumvents the major drawbacks of former versions. In addition, the anchoring of OprI to the OM of the host cell is further explored for the production of novel recombinant bacterial cell wall-derived formulations (OM fragments and OM vesicles) with distinct potential for PRR activation. As an example, the African swine fever virus ORF A104R was cloned and the recombinant antigen was obtained in the three formulations. Overall, our results validate a new system suitable for the production of immunogenic formulations that can be used for the development of experimental vaccines and for studies on the modulation of acquired immunity.
Resumo:
In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.
Resumo:
As manifestações públicas de cultura popular têm sido abordadas por diferentes áreas do conhecimento (antropologia, sociologia, história, etnografia e outras), mas as ciências da comunicação têm-lhes dado relativamente menos atenção. Do estudo de festas populares, sobretudo na investigação literária da sua matriz religiosa, passamos à investigação e à análise dos processos comunicacionais destas manifestações. O encontro com uma nova área das ciências da comunicação, a folkcomunicação, foi decisivo para a opção por paradigmas e instrumentos de análise que nos têm apoiado na investigação em curso sobre comunicação popular. Este texto tem como principal objectivo apresentar a origem e a evolução desta teoria comunicacional, Folkcomunicação, teoria inspirada na Escola de Chicago. Trata-se de um artigo teórico/conceptual, resultado de pesquisa bibliográfica e análise do Estado da Arte em relação à cultura popular e à folkcomunicação.
Resumo:
This paper is devoted to the synchronization of a dynamical system defined by two different coupling versions of two identical piecewise linear bimodal maps. We consider both local and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical results for the existence of synchronization on coupling parameter range. We characterize the synchronization manifold as an attractor and measure the synchronization speed. In one coupling version, we give a necessary and sufficient condition for the synchronization. We study the basins of synchronization and show that, depending upon the type of coupling, they can have very different shapes and are not necessarily constituted by the whole phase space; in some cases, they can be riddled.
Resumo:
This paper concerns dynamics and bifurcations properties of a class of continuous-defined one-dimensional maps, in a three-dimensional parameter space: Blumberg's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon, associated with the stability of a fixed point. A central point of our investigation is the study of bifurcations structure for this class of functions. We verified that under some sufficient conditions, Blumberg's functions have a particular bifurcations structure: the big bang bifurcations of the so-called "box-within-a-box" type, but for different kinds of boxes. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct attractors. This work contributes to clarify the big bang bifurcation analysis for continuous maps. To support our results, we present fold and flip bifurcations curves and surfaces, and numerical simulations of several bifurcation diagrams.