3 resultados para Discount airfare
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This work focuses on the appraisal of public and environmental projects and, more specifically, on the calculation of the social discount rate (SDR) for this kind of very long-term investment projects. As a rule, we can state that the instantaneous discount rate must be equal to the hazard rate of the public good or to the mortality rate of the population that the project is intended to. The hazard can be due to technical failures of the system, but, in this paper, we are going to consider different independent variables that can cause the hazard. That is, we are going to consider a multivariate hazard rate. In our empirical application, the Spanish forest surface will be the system and the forest fire will be the fail that can be caused by several factors. The aim of this work is to integrate the different variables that produce the fail in the calculation of the SDR from a multivariate hazard rate approach.
Resumo:
Reinforcement Learning is an area of Machine Learning that deals with how an agent should take actions in an environment such as to maximize the notion of accumulated reward. This type of learning is inspired by the way humans learn and has led to the creation of various algorithms for reinforcement learning. These algorithms focus on the way in which an agent’s behaviour can be improved, assuming independence as to their surroundings. The current work studies the application of reinforcement learning methods to solve the inverted pendulum problem. The importance of the variability of the environment (factors that are external to the agent) on the execution of reinforcement learning agents is studied by using a model that seeks to obtain equilibrium (stability) through dynamism – a Cart-Pole system or inverted pendulum. We sought to improve the behaviour of the autonomous agents by changing the information passed to them, while maintaining the agent’s internal parameters constant (learning rate, discount factors, decay rate, etc.), instead of the classical approach of tuning the agent’s internal parameters. The influence of changes on the state set and the action set on an agent’s capability to solve the Cart-pole problem was studied. We have studied typical behaviour of reinforcement learning agents applied to the classic BOXES model and a new form of characterizing the environment was proposed using the notion of convergence towards a reference value. We demonstrate the gain in performance of this new method applied to a Q-Learning agent.
Resumo:
This paper studies a portfolio choice problem such that the pricing rule may incorporate transaction costs and the risk measure is coherent and expectation bounded. We will prove the necessity of dealing with pricing rules such that there exists an essentially bounded stochastic discount factor, which must be also bounded from below by a strictly positive value. Otherwise good deals will be available to traders, i.e., depending on the selected risk measure, investors can build portfolios whose (risk, return) will be as close as desired to (−infinity, infinity) or (0, infinity). This pathologic property still holds for vector risk measures (i.e., if we minimize a vector valued function whose components are risk measures). It is worthwhile to point out that essentially bounded stochastic discount factors are not usual in financial literature. In particular, the most famous frictionless, complete and arbitrage free pricing models imply the existence of good deals for every coherent and expectation bounded (scalar or vector) measure of risk, and the incorporation of transaction costs will not guarantee the solution of this caveat.