8 resultados para Direct counting by microscopy

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In Angola, malaria is an endemic disease having a major impact on the economy. The WHO recommends testing for all suspected malaria cases, to avoid the presumptive treatment of this disease. In malaria endemic regions laboratory technicians must be very comfortable with microscopy, the golden standard for malaria diagnosis, to avoid the incorrect diagnosis. The improper use of medication promotes drug resistance and undesirable side effects. The present study aims to assess the impact of a three-day refresher course on the knowledge of technicians, quality of blood smears preparation and accuracy of microscopy malaria diagnosis, using qPCR as reference method. Methods: This study was implemented in laboratories from three hospitals in different provinces of Angola: Bengo, Benguela and Luanda. In each laboratory samples were collected before and after the training course (slide with thin and thick blood smears, a dried blood spot and a form). The impact of the intervention was evaluated through a written test, the quality of slide preparation and the performance of microscopy. Results: It was found a significant increase on the written test median score, from 52.5% to 65.0%. A total of 973 slides were analysed to evaluate the quality of thick and thin blood smears. Considering all laboratories there was a significant increase in quality of thick and thin blood smears. To determine the performance of microscopy using qPCR as the reference method we used 1,028 samples. Benguela presented the highest values for specificity, 92.9% and 98.8% pre and post-course, respectively and for sensitivity the best pre-course was Benguela (75.9%) and post-course Luanda (75.0%). However, no significant increase in sensitivity and specificity after the training course was registered in any laboratory analysed. Discussion: The findings of this study support the need of continuous refresher training for microscopists and other laboratory staff. The laboratories should have a quality control programme to supervise the diagnosis and also to assess the periodicity of new training. However, other variables needed to be considered to have a correct malaria diagnosis, such as adequate equipment and reagents for staining and visualization, good working conditions, motivated and qualified personnel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to certain fungi can cause human illness. Fungi cause adverse human health effects through three specific mechanisms: generation of a harmful immune response (e.g., allergy or hypersensitivity pneumonitis); direct infection by the fungal organism; by toxic-irritant effects from mold byproducts, such as mycotoxins. In Portugal there is an increasingly industry of large facilities that produce whole chickens for domestic consumption and only few investigations have reported on fungal contamination of the poultry litter. The material used for poultry litter is varied but normally can be constitute by: pine shavings; sawdust of eucalyptus; other types of wood; peanut; coffee; sugar cane; straw; hay; grass; paper processed. Litter is one of the most contributive factors to fungal contamination in poultries. Spreading litter is one of the tasks that normally involve higher exposure of the poultry workers to dust, fungi and their metabolites, such as VOC’s and mycotoxins. After being used and removed from poultries, litter is ploughed into agricultural soils, being this practice potentially dangerous for the soil environment, as well for both humans and animals. The goal of this study was to characterize litter’s fungal contamination and also to report the incidence of keratinophilic and toxigenic fungi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to certain fungi (molds) can cause human illness by 3 specific mechanisms: generation of a harmful immune response, direct infection by the organism or/and toxic-irritant effects from mold byproducts. Moulds are considered central elements in daily exposure of poultry workers and can be the cause of an increased risk of occupational respiratory diseases, like allergic and non-allergic rhinitis and asthma.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Agências Financiadoras: Fundação para a Ciência e a Tecnologia - PTDC/FIS/102127/2008 e PTDC/FIS/102127/2008 e SFRH/BPD/78871/2011; Spanish Ministerio de Ciencia e Innovacion - FUNCOAT-CSD2008-00023-CONSOLIDER; Instituto Superior Técnico;

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chromium dioxide (CrO2) has been extensively used in the magnetic recording industry. However, it is its ferromagnetic half-metallic nature that has more recently attracted much attention, primarily for the development of spintronic devices. CrO2 is the only stoichiometric binary oxide theoretically predicted to be fully spin polarized at the Fermi level. It presents a Curie temperature of ∼ 396 K, i.e. well above room temperature, and a magnetic moment of 2 mB per formula unit. However an antiferromagnetic native insulating layer of Cr2O3 is always present on the CrO2 surface which enhances the CrO2 magnetoresistance and might be used as a barrier in magnetic tunnel junctions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 mu m within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 mu J, tau = 560 fs, f = 10 kHz, and v = 100 mu m/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 mu m and a minor diameter of about 6 mu m. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 +/- 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 +/- 20 x 16 +/- 8 x 69 +/- 16 nm(3) and 367 +/- 239 x 16 +/- 8 x 360 +/- 194 nm(3), respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density. (C) 2014 AIP Publishing LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reuse of waste fluid catalytic cracking (FCC) catalyst as partial surrogate for cement can reduce the environmental impact of both the oil-refinery and cement production industries [1,2]. FCC catalysts can be considered as pozzolanic materials since in the presence of water they tend to chemically react with calcium hydroxide to produce compounds possessing cementitious properties [3,4]. In addition, partial replacement of cement with FCC catalysts can enhance the performance of pastes and mortars, namely by improving their compressive strength [5,6]. In the present work the reaction of waste FCC catalyst with Ca(OH)2 has been investigated after a curing time of 28 days by scanning electron microscopy (SEM) with electron backscattered signal (BSE) combined with X-ray energy dispersive spectroscopy (EDS) carried out with a JEOL JSM 7001F instrument operated at 15 kV coupled to an INCA pentaFetx3 Oxford spectrometer. The polished cross-sections of FCC particles embedded in resin have also been evaluated by atomic force microscopy (AFM) in contact mode (CM) using a NanoSurf EasyScan 2 instrument. The SEM/EDS results revealed that an inward migration of Ca occurred during the reaction. A weaker outward migration of Si and Al was also apparent (Fig. 1). The migration of Ca was not homogeneous and tended to follow high-diffusivity paths within the porous waste FCC catalyst particles. The present study suggests that the porosity of waste FCC catalysts is key for the migration/reaction of Ca from the surrounding matrix, playing an important role in the pozzolanic activity of the system. The topography images and surface roughness parameters obtained by atomic force microscopy can be used to infer the local porosity in waste FCC catalyst particles (Fig. 2).