2 resultados para DeepLearning NeuralNetwork StackedDenoisingAuto-encoder ArtificialIntelligence IntelligenzaArtificiale RetiNeurali TimeSeries SerieStoriche SerieTemporali Forecasting Previsione Auto-encoder
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Motion compensated frame interpolation (MCFI) is one of the most efficient solutions to generate side information (SI) in the context of distributed video coding. However, it creates SI with rather significant motion compensated errors for some frame regions while rather small for some other regions depending on the video content. In this paper, a low complexity Infra mode selection algorithm is proposed to select the most 'critical' blocks in the WZ frame and help the decoder with some reliable data for those blocks. For each block, the novel coding mode selection algorithm estimates the encoding rate for the Intra based and WZ coding modes and determines the best coding mode while maintaining a low encoder complexity. The proposed solution is evaluated in terms of rate-distortion performance with improvements up to 1.2 dB regarding a WZ coding mode only solution.
Resumo:
Recently, several distributed video coding (DVC) solutions based on the distributed source coding (DSC) paradigm have appeared in the literature. Wyner-Ziv (WZ) video coding, a particular case of DVC where side information is made available at the decoder, enable to achieve a flexible distribution of the computational complexity between the encoder and decoder, promising to fulfill novel requirements from applications such as video surveillance, sensor networks and mobile camera phones. The quality of the side information at the decoder has a critical role in determining the WZ video coding rate-distortion (RD) performance, notably to raise it to a level as close as possible to the RD performance of standard predictive video coding schemes. Towards this target, efficient motion search algorithms for powerful frame interpolation are much needed at the decoder. In this paper, the RD performance of a Wyner-Ziv video codec is improved by using novel, advanced motion compensated frame interpolation techniques to generate the side information. The development of these type of side information estimators is a difficult problem in WZ video coding, especially because the decoder only has available some reference, decoded frames. Based on the regularization of the motion field, novel side information creation techniques are proposed in this paper along with a new frame interpolation framework able to generate higher quality side information at the decoder. To illustrate the RD performance improvements, this novel side information creation framework has been integrated in a transform domain turbo coding based Wyner-Ziv video codec. Experimental results show that the novel side information creation solution leads to better RD performance than available state-of-the-art side information estimators, with improvements up to 2 dB: moreover, it allows outperforming H.264/AVC Intra by up to 3 dB with a lower encoding complexity.