4 resultados para Decaying
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We study the implications for two-Higgs-doublet models of the recent announcement at the LHC giving a tantalizing hint for a Higgs boson of mass 125 GeV decaying into two photons. We require that the experimental result be within a factor of 2 of the theoretical standard model prediction, and analyze the type I and type II models as well as the lepton-specific and flipped models, subject to this requirement. It is assumed that there is no new physics other than two Higgs doublets. In all of the models, we display the allowed region of parameter space taking the recent LHC announcement at face value, and we analyze the W+W-, ZZ, (b) over barb, and tau(+)tau(-) expectations in these allowed regions. Throughout the entire range of parameter space allowed by the gamma gamma constraint, the numbers of events for Higgs decays into WW, ZZ, and b (b) over bar are not changed from the standard model by more than a factor of 2. In contrast, in the lepton-specific model, decays to tau(+)tau(-) are very sensitive across the entire gamma gamma-allowed region.
Resumo:
A novel contribution to the leptonic CP asymmetries in type II seesaw leptogenesis scenarios is obtained for the cases in which flavor effects are relevant for the dynamics of leptogenesis. In the so-called flavored leptogenesis regime, the interference between the tree-level amplitude of the scalar triplet decaying into two leptons and the one-loop wave function correction with leptons in the loop, leads to a new nonvanishing CP asymmetry contribution. The latter conserves total lepton number but violates lepton flavor. Cases in which this novel contribution may be dominant in the generation of the baryon asymmetry are briefly discussed.
Resumo:
The Higgs boson recently discovered at the Large Hadron Collider has shown to have couplings to the remaining particles well within what is predicted by the Standard Model. The search for other new heavy scalar states has so far revealed to be fruitless, imposing constraints on the existence of new scalar particles. However, it is still possible that any existing heavy scalars would preferentially decay to final states involving the light Higgs boson thus evading the current LHC bounds on heavy scalar states. Moreover, decays of the heavy scalars could increase the number of light Higgs bosons being produced. Since the number of light Higgs bosons decaying to Standard Model particles is within the predicted range, this could mean that part of the light Higgs bosons could have their origin in heavy scalar decays. This situation would occur if the light Higgs couplings to Standard Model particles were reduced by a concomitant amount. Using a very simple extension of the SM - the two-Higgs doublet model we show that in fact we could already be observing the effect of the heavy scalar states even if all results related to the Higgs are in excellent agreement with the Standard Model predictions.
Resumo:
LHC has reported tantalizing hints for a Higgs boson of mass 125 GeV decaying into two photons. We focus on two-Higgs-doublet Models, and study the interesting possibility that the heavier scalar H has been seen, with the lightest scalar h having thus far escaped detection. Nonobservation of h at LEP severely constrains the parameter-space of two-Higgs-doublet models. We analyze cases where the decay H -> hh is kinematically allowed, and cases where it is not, in the context of type I, type II, lepton-specific, and flipped models.