7 resultados para Cultivation without soil

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples–Triticum aestivum L. (Jordão/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93–117 and 26,400–31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4–30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordão presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordão and Marialva cultivars accumulated not statistically significant different concentrations of different metals. The advantages of using INAA are the multielementality, low detection limits and use of solid samples (no need of digestion).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of ethene in water and in the fermentation medium of Xanthobacter Py(2) was determined with a Ben-Naim-Baer type apparatus. The solubility measurements were carried out in the temperature range of (293.15 to 323.15) K and at atmospheric pressure with a precision of about +/- 0.3 %. The Ostwald coefficients, the mole fractions of the dissolved ethene, at the gas partial pressure of 101.325 kPa, and the Henry coefficients, at the water vapor pressure, were calculated using accurate thermodynamic relations. A comparison between the solubility of ethene in water and in the cultivation medium has shown that this gas is about 2.4 % more soluble in pure water. On the other hand, from the solubility temperature dependence, the Gibbs energy, enthalpy, and entropy changes for the process of transferring the solute from the gaseous phase to the liquid solutions were also determined. Moreover, the perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS) model was used for the prediction of the solubility of ethene in water. New parameters, k(ij), are proposed for this system, and it was found that using a ky temperature-dependent PC-SAFT EOS describes more accurately the behavior solubilities of ethene in water at 101.325 kPa, improving the deviations to 1 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the utilization of Pulsed Electric Fields to control the protozoan contamination of a microalgae culture, in an industrial 2.7m3 microalgae photobioreactor. The contaminated culture was treated with Pulsed Electric Fields, PEF, for 6h with an average of 900V/cm, 65μs pulses of 50Hz. Working with recirculation, all the culture was uniformly exposed to the PEF throughout the assay. The development of the microalgae and protozoan populations was followed and the results showed that PEF is effective on the selective elimination of protozoa from microalgae cultures, inflicting on the protozoa growth halt, death or cell rupture, without affecting microalgae productivity. Specifically, the results show a reduction of the active protozoan population of 87% after 6h treatment and 100% after few days of normal cultivation regime. At the same time, microalgae growth rate remained unaffected. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUNDWhile the pharmaceutical industry keeps an eye on plasmid DNA production for new generation gene therapies, real-time monitoring techniques for plasmid bioproduction are as yet unavailable. This work shows the possibility of in situ monitoring of plasmid production in Escherichia coli cultures using a near infrared (NIR) fiber optic probe. RESULTSPartial least squares (PLS) regression models based on the NIR spectra were developed for predicting bioprocess critical variables such as the concentrations of biomass, plasmid, carbon sources (glucose and glycerol) and acetate. In order to achieve robust models able to predict the performance of plasmid production processes, independently of the composition of the cultivation medium, cultivation strategy (batch versus fed-batch) and E. coli strain used, three strategies were adopted, using: (i) E. coliDH5 cultures conducted under different media compositions and culture strategies (batch and fed-batch); (ii) engineered E. coli strains, MG1655endArecApgi and MG1655endArecA, grown on the same medium and culture strategy; (iii) diverse E. coli strains, over batch and fed-batch cultivations and using different media compositions. PLS models showed high accuracy for predicting all variables in the three groups of cultures. CONCLUSIONNIR spectroscopy combined with PLS modeling provides a fast, inexpensive and contamination-free technique to accurately monitoring plasmid bioprocesses in real time, independently of the medium composition, cultivation strategy and the E. coli strain used.