25 resultados para Covariance matrix estimation

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a blind method to detect interference in GNSS signals whereby the algorithms do not require knowledge of the interference or channel noise features. A sample covariance matrix is constructed from the received signal and its eigenvalues are computed. The generalized likelihood ratio test (GLRT) and the condition number test (CNT) are developed and compared in the detection of sinusoidal and chirp jamming signals. A computationally-efficient decision threshold was proposed for the CNT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper analyzes the risk-return trade-off in European equities considering both temporal and cross-sectional dimensions. In our analysis, we introduce not only the market portfolio but also 15 industry portfolios comprising the entire market. Several bivariate GARCH models are estimated to obtain the covariance matrix between excess market returns and the industrial portfolios and the existence of a risk-return trade-off is analyzed through a cross-sectional approach using the information in all portfolios. It is obtained evidence for a positive and significant risk-return trade-off in the European market. This conclusion is robust for different GARCH specifications and is even more evident after controlling for the main financial crisis during the sample period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The portfolio generating the iTraxx EUR index is modeled by coupled Markov chains. Each of the industries of the portfolio evolves according to its own Markov transition matrix. Using a variant of the method of moments, the model parameters are estimated from a data set of Standard and Poor's. Swap spreads are evaluated by Monte-Carlo simulations. Along with an actuarially fair spread, at least squares spread is considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As it is widely known, in structural dynamic applications, ranging from structural coupling to model updating, the incompatibility between measured and simulated data is inevitable, due to the problem of coordinate incompleteness. Usually, the experimental data from conventional vibration testing is collected at a few translational degrees of freedom (DOF) due to applied forces, using hammer or shaker exciters, over a limited frequency range. Hence, one can only measure a portion of the receptance matrix, few columns, related to the forced DOFs, and rows, related to the measured DOFs. In contrast, by finite element modeling, one can obtain a full data set, both in terms of DOFs and identified modes. Over the years, several model reduction techniques have been proposed, as well as data expansion ones. However, the latter are significantly fewer and the demand for efficient techniques is still an issue. In this work, one proposes a technique for expanding measured frequency response functions (FRF) over the entire set of DOFs. This technique is based upon a modified Kidder's method and the principle of reciprocity, and it avoids the need for modal identification, as it uses the measured FRFs directly. In order to illustrate the performance of the proposed technique, a set of simulated experimental translational FRFs is taken as reference to estimate rotational FRFs, including those that are due to applied moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Direct Power Control of Three-Phase Matrix Converters (DPC-MC) operating as Unified Power Flow Controllers (UPFC). Since matrix converters allow direct AC/AC power conversion without intermediate energy storage link, the resulting UPFC has reduced volume and cost, together with higher reliability. Theoretical principles of DPC-MC method are established based on an UPFC model, together with a new direct power control approach based on sliding mode control techniques. As a result, active and reactive power can be directly controlled by selection of an appropriate switching state of matrix converter. This new direct power control approach associated to matrix converters technology guarantees decoupled active and reactive power control, zero error tracking, fast response times and timely control actions. Simulation results show good performance of the proposed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of room impulse response (RIR) when there are high background noise levels frequently means one must deal with very low signal-to-noise ratios (SNR). if such is the case, the measurement might yield unreliable results, even when synchronous averaging techniques are used. Furthermore, if there are non-linearities in the apparatus or system time variances, the final SNR can be severely degraded. The test signals used in RIR measurement are often disturbed by non-stationary ambient noise components. A novel approach based on the energy analysis of ambient noise - both in the time and in frequency - was considered. A modified maximum length sequence (MLS) measurement technique. referred to herein as the hybrid MLS technique, was developed for use in room acoustics. The technique consists of reducing the noise energy of the captured sequences before applying the averaging technique in order to improve the overall SNRs and frequency response accuracy. Experiments were conducted under real conditions with different types of underlying ambient noises. Results are shown and discussed. Advantages and disadvantages of the hybrid MLS technique over standard MLS technique are evaluated and discussed. Our findings show that the new technique leads to a significant increase in the overall SNR. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We suggest that the weak-basis independent condition det(M-nu) = 0 for the effective neutrino mass matrix can be used in order to remove the ambiguities in the reconstruction of the neutrino mass matrix from input data available from present and future feasible experiments. In this framework, we study the full reconstruction of M-nu with special emphasis on the correlation between the Majorana CP-violating phase and the various mixing angles. The impact of the recent KamLAND results on the effective neutrino mass parameter is also briefly discussed. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório de estágio para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Vias de Comunicação e Transportes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent integrated circuit technologies have opened the possibility to design parallel architectures with hundreds of cores on a single chip. The design space of these parallel architectures is huge with many architectural options. Exploring the design space gets even more difficult if, beyond performance and area, we also consider extra metrics like performance and area efficiency, where the designer tries to design the architecture with the best performance per chip area and the best sustainable performance. In this paper we present an algorithm-oriented approach to design a many-core architecture. Instead of doing the design space exploration of the many core architecture based on the experimental execution results of a particular benchmark of algorithms, our approach is to make a formal analysis of the algorithms considering the main architectural aspects and to determine how each particular architectural aspect is related to the performance of the architecture when running an algorithm or set of algorithms. The architectural aspects considered include the number of cores, the local memory available in each core, the communication bandwidth between the many-core architecture and the external memory and the memory hierarchy. To exemplify the approach we did a theoretical analysis of a dense matrix multiplication algorithm and determined an equation that relates the number of execution cycles with the architectural parameters. Based on this equation a many-core architecture has been designed. The results obtained indicate that a 100 mm(2) integrated circuit design of the proposed architecture, using a 65 nm technology, is able to achieve 464 GFLOPs (double precision floating-point) for a memory bandwidth of 16 GB/s. This corresponds to a performance efficiency of 71 %. Considering a 45 nm technology, a 100 mm(2) chip attains 833 GFLOPs which corresponds to 84 % of peak performance These figures are better than those obtained by previous many-core architectures, except for the area efficiency which is limited by the lower memory bandwidth considered. The results achieved are also better than those of previous state-of-the-art many-cores architectures designed specifically to achieve high performance for matrix multiplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de mestrado para obtenção do grau de Mestre em engenharia Mecância

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present results from teleseismic P-wave receiver functions (PRFs) obtained in Portugal, Western Iberia. A dense seismic station deployment conducted between 2010 and 2012, in the scope of the WILAS project and covering the entire country, allowed the most spatially extensive probing on the bulk crustal seismic properties of Portugal up to date. The application of the H-κ stacking algorithm to the PRFs enabled us to estimate the crustal thickness (H) and the average crustal ratio of the P- and S-waves velocities V p/V s (κ) for the region. Observations of Moho conversions indicate that this interface is relatively smooth with the crustal thickness ranging between 24 and 34 km, with an average of 30 km. The highest V p/V s values are found on the Mesozoic-Cenozoic crust beneath the western and southern coastal domain of Portugal, whereas the lowest values correspond to Palaeozoic crust underlying the remaining part of the subject area. An average V p/V s is found to be 1.72, ranging 1.63-1.86 across the study area, indicating a predominantly felsic composition. Overall, we systematically observe a decrease of V p/V s with increasing crustal thickness. Taken as a whole, our results indicate a clear distinction between the geological zones of the Variscan Iberian Massif in Portugal, the overall shape of the anomalies conditioned by the shape of the Ibero-Armorican Arc, and associated Late Paleozoic suture zones, and the Meso-Cenozoic basin associated with Atlantic rifting stages. Thickened crust (30-34 km) across the studied region may be inherited from continental collision during the Paleozoic Variscan orogeny. An anomalous crustal thinning to around 28 km is observed beneath the central part of the Central Iberian Zone and the eastern part of South Portuguese Zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and implementation of direct power controllers for three-phase matrix converters (MC) operating as Unified Power Flow Controllers (UPFC). Theoretical principles of the decoupled linear power controllers of the MC-UPFC to minimize the cross-coupling between active and reactive power control are established. From the matrix converter based UPFC model with a modified Venturini high frequency PWM modulator, decoupled controllers for the transmission line active (P) and reactive (Q) power direct control are synthesized. Simulation results, obtained from Matlab/Simulink, are presented in order to confirm the proposed approach. Results obtained show decoupled power control, zero error tracking, and fast responses with no overshoot and no steady-state error.