7 resultados para Corrosion Monitor

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução – No caso de uma eventual contaminação radioativa esta deve ser quantificada, pelo que é necessário garantir que as condições de funcionamento de um monitor de contaminação de superfícies se encontrem adequadamente caracterizadas, através da determinação da sua eficiência de deteção. Este estudo tem como objetivo determinar a eficiência de deteção de um monitor de contaminação e analisar a influência da distância e da atividade. Metodologia – O monitor de contaminação Thermo Mini 900E e as fontes radioativas planas de referência de Carbono – 14 (C-14), Césio – 137 (Cs-137), Estrôncio – 90 (Sr-90), Cloro – 36 (Cl-36) e Amerício – 241 (Am-241) com débito de emissão superficial rastreável ao Physikalish Technischen Bundesanstalt (PTB) foram utilizadas. Fontes de Sr-90 e C-14 com dois débitos de emissão distintos para cada e distâncias de 1 a 20mm foram usados para estudar a sua influência na eficiência de deteção. Resultados – Verificou-se que as fontes radioativas emissoras de partículas de maior energia apresentam uma maior eficiência de deteção e que esta diminui com o aumento da distância do detetor à fonte, sendo que os radioisótopos de maior energia apresentam um decréscimo na eficiência de 15% ao longo de 20mm, enquanto os radioisótopos de menor energia apresentam um decréscimo de 10%. Não se verificou uma influência expressiva do débito de emissão na eficiência de deteção deste monitor de contaminação. Conclusão – A eficiência de deteção de um monitor de contaminação portátil é dependente da distância deste à contaminação bem como do tipo de radiação emitida e energia dos radioisótopos presentes na contaminação. - ABSTRACT - Introduction – A radioactive contamination needs to be quantified in case it eventually occurs. Therefore it is necessary to ensure that the operating conditions of a surface contamination monitor are characterized by determining its detection efficiency. This experimental study aims to determine the detection efficiency of a contamination monitor and evaluate the distance and surface emission rate influence on the detection efficiency. Methodology – A contamination monitor Thermo Mini 900E was tested with reference radiation sources of Carbon – 14 (C-14), Cesium – 137 (Cs-137), Strontium – 90 (Sr-90), Chlorine – 36 (Cl-36) and Americium – 241 (Am-241) with its emission rate traced to the Physikalish Technischen Bundesanstalt (PTB). Sources of Sr-90 and C-14 with two different emission rates for each one and distances of 1 to 20mm were used to study its influence in the detection efficiency. Results – With the increasing of distance, the detection efficiency decreases. The most energetic radiation sources have higher detection efficiency, boasting a 15% decrease over 20mm whereas the sources bearing a smaller efficiency decrease 10%. No influence of the surface emission rate in the detection efficiency was verified. Conclusion – Thus, it is concluded that the detection efficiency of a contamination monitor is dependent of the distance between it and the contamination as well as the type and energy of the radioisotopes present in the contamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following work on tantalum and chromium implanted flat M50 steel substrates, this work reports on the electrochemical behaviour of M50 steel implanted with tantalum and chromium and the effect of the angle of incidence. Proposed optimum doses for resistance to chloride attack were based on the interpretation of results obtained during long-term and accelerated electrochemical testing. After dose optimization from the corrosion viewpoint, substrates were implanted at different angles of incidence (15°, 30°, 45°, 60°, 75°, 90°) and their susceptibility to localized corrosion assessed using open-circuit measurements, step by step polarization and cyclic voltammetry at several scan rates (5–50 mV s-1). Results showed, for tantalum implanted samples, an ennoblement of the pitting potential of approximately 0.5 V for an angle of incidence of 90°. A retained dose of 5 × 1016 atoms cm-2 was found by depth profiling with Rutherford backscattering spectrometry. The retained dose decreases rapidly with angle of incidence. The breakdown potential varies roughly linearly with the angle of incidence up to 30° falling fast to reach -0.1 V (vs. a saturated calomel electrode (SCE)) for 15°. Chromium was found to behave differently. Maximum corrosion resistance was found for angles of 45°–60° according to current densities and breakdown potentials. Cr+ depth profiles ((p,γ) resonance broadening method), showed that retained doses up to an angle of 60° did not change much from the implanted dose at 90°, 2 × 1017 Cr atoms cm-2. The retained implantation dose for tantalum and chromium was found to follow a (cos θ)8/3 dependence where θ is the angle between the sample normal and the beam direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg alloys can be used as bioresorsable metallic implants. However, the high corrosion rate of magnesium alloys has limited their biomedical applications. Although Mg ions are essential to the human body, an excess may cause undesirable health effects. Therefore, surface treatments are required to enhance the corrosion resistance of magnesium parts, decreasing its rate to biocompatible levels and allowing its safe application as bioresorbable metallic implants. The application of biocompatible silane coatings is envisaged as a suitable strategy for retarding the corrosion process of magnesium alloys. In the current work, a new glycidoxypropyltrimethoxysilane (GPTMS) based coating was tested on AZ31 magnesium substrates subjected to different surface conditioning procedures before coating deposition. The surface conditioning included a short etching with hydrofluoric acid (HF) or a dc polarisation in alkaline electrolyte. The silane coated samples were immersed in Hank's solution and the protective performance of the coating was studied through electrochemical impedance spectroscopy (EIS). The EIS data was treated by new equivalent circuit models and the results revealed that the surface conditioning process plays a key role in the effectiveness of the silane coating. The HF treated samples led to the highest impedance values and delayed the coating degradation, compared to the mechanically polished samples or to those submitted to dc polarisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg alloys are very susceptible to corrosion in physiological media. This behaviour limits its widespread use in biomedical applications as bioresorbable implants, but it can be controlled by applying protective coatings. On one hand, coatings must delay and control the degradation process of the bare alloy and, on the other hand, they must be functional and biocompatible. In this study a biocompatible polycaprolactone (PCL) coating was functionalised with nano hydroxyapatite (HA) particles for enhanced biocompatibility and with an antibiotic, cephalexin, for anti-bacterial purposes and applied on the AZ31 alloy. The chemical composition and the surface morphology of the coated samples, before and after the corrosion tests, were studied by scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX) and Raman. The results showed that the presence of additives induced the formation of agglomerates and defects in the coating that resulted in the formation of pores during immersion in Hanks' solution. The corrosion resistance of the coated samples was studied in Hank's solution by electrochemical impedance spectroscopy (EIS). The results evidenced that all the coatings can provide corrosion protection of the bare alloy. However, in the presence of the additives, corrosion protection decreased. The wetting behaviour of the coating was evaluated by the static contact angle method and it was found that the presence of both hydroxyapatite and cephalexin increased the hydrophilic behaviour of the surface. The results showed that it is possible to tailor a composite coating that can store an antibiotic and nano hydroxyapatite particles, while allowing to control the in-vitro corrosion degradation of the bioresorbable Mg alloy AZ31. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectroscopy, either in the near and mid (NIR/MIR) region of the spectra, has gained great acceptance in the industry for bioprocess monitoring according to Process Analytical Technology, due to its rapid, economic, high sensitivity mode of application and versatility. Due to the relevance of cyprosin (mostly for dairy industry), and as NIR and MIR spectroscopy presents specific characteristics that ultimately may complement each other, in the present work these techniques were compared to monitor and characterize by in situ and by at-line high-throughput analysis, respectively, recombinant cyprosin production by Saccharomyces cerevisiae. Partial least-square regression models, relating NIR and MIR-spectral features with biomass, cyprosin activity, specific activity, glucose, galactose, ethanol and acetate concentration were developed, all presenting, in general, high regression coefficients and low prediction errors. In the case of biomass and glucose slight better models were achieved by in situ NIR spectroscopic analysis, while for cyprosin activity and specific activity slight better models were achieved by at-line MIR spectroscopic analysis. Therefore both techniques enabled to monitor the highly dynamic cyprosin production bioprocess, promoting by this way more efficient platforms for the bioprocess optimization and control.