6 resultados para Context-based

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing heterogeneity of networks, devices and consumption conditions asks for flexible and adaptive video coding solutions. The compression power of the HEVC standard and the benefits of the distributed video coding paradigm allow designing novel scalable coding solutions with improved error robustness and low encoding complexity while still achieving competitive compression efficiency. In this context, this paper proposes a novel scalable video coding scheme using a HEVC Intra compliant base layer and a distributed coding approach in the enhancement layers (EL). This design inherits the HEVC compression efficiency while providing low encoding complexity at the enhancement layers. The temporal correlation is exploited at the decoder to create the EL side information (SI) residue, an estimation of the original residue. The EL encoder sends only the data that cannot be inferred at the decoder, thus exploiting the correlation between the original and SI residues; however, this correlation must be characterized with an accurate correlation model to obtain coding efficiency improvements. Therefore, this paper proposes a correlation modeling solution to be used at both encoder and decoder, without requiring a feedback channel. Experiments results confirm that the proposed scalable coding scheme has lower encoding complexity and provides BD-Rate savings up to 3.43% in comparison with the HEVC Intra scalable extension under development. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safety is one of the major concerns of process safety engineers in most industrial facilities all over the world. To this scope, some events play an important role once the effect of their consequences can be assumed as totally undesirable. One of these events refers to the occurrence of a fire. Such event can result in catastrophic consequences for life, equipment, and continuity of activities or even leading to environmental damage. A fire protection equipment with low reliability means that this equipment are often unavailable and thus the risk of a fire increases. Maintenance of fire protection equipment is very important because this kind of systems is mostly in a dormant mode, which gives uncertainty about their operability when demanded in a real situation of fire. This article outlines the importance of tests, inspection, and maintenance operations in the context of a fire sprinkler system and proposes a methodology based on international standards and supported by test/inspection reports to correct the frequency of these actions according to the level of degradation of the components and regarding safety purposes. © 2015 American Institute of Chemical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.