4 resultados para Conjunctival swab
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Introdução – Apesar de em Portugal se verificar o aumento da indústria da produção de aves para consumo humano, apenas alguns estudos incidem sobre a qualidade do ar interior e as implicações da sua degradação. Objectivos – Descrever a contaminação fúngica num aviário, analisar possíveis associações com a temperatura ambiente e a humidade relativa e o possível impacto na saúde dos consumidores e trabalhadores desta unidade. Métodos – Foi desenvolvido um estudo descritivo para avaliar a contaminação fúngica num aviário. Colheram‑se 5 amostras de ar de 100 litros através do método de compactação e 4 amostras de superfícies, utilizando a técnica da zaragatoa e um quadrado de 10 cm de lado de metal. Simultaneamente, os parâmetros ambientais – temperatura ambiente e humidade relativa – também foram medidos. Resultados – Foram identificadas vinte espécies de fungos no ar, sendo os seguintes os quatro géneros mais comummente isolados: Cladosporium (40,5%), Alternaria (10,8%), Chrysosporium e Aspergillus (6,8%). Nas superfícies, 21 espécies de fungos foram identificadas, sendo os 4 géneros mais identificados Penicillium (51,8%), Cladosporium (25,4%), Alternaria (6,1%) e Aspergillus (4,2%). Importa referir o facto de Aspergillus flavus, também isolado no ar, ser reconhecido como produtor de micotoxinas (aflatoxina) e Aspergillus fumigatus, uma das espécies isoladas no ar e superfícies, ser capaz de causar aspergilose grave ou fatal. Não se verificou relação significativa (p> 0,05) entre a contaminação fúngica e as variáveis ambientais. Conclusão – Caracterizou‑se a distribuição fúngica no ar e superfícies do aviário e analisou‑se a possível influência das variáveis ambientais. Foi reconhecido um potencial problema de Saúde Pública devido à contaminação fúngica e à possível produção de micotoxinas com a eventual contaminação dos produtos alimentares. A contaminação fúngica, particularmente causada pelo Aspergillus fumigatus, e a possível presença de micotoxinas no ar, devem ser encaradas também como fatores de risco neste contexto ocupacional. ABSTRACT - Background – Although there is an increasingly industry that produce whole chickens for domestic consumption in Portugal, only few investigations have reported on the indoor air of these plants and the consequences of their degradation. Objectives – Describe one poultry environmental fungal contamination analyse possible associations between temperature and relative humidity and its possible impact on the health of consumers and of the poultry workers. Methods – A descriptive study was developed to monitor one poultry fungal contamination. Five air samples of 100 litres through impaction method were collected and 4 swab samples from surfaces were also collected using a 10 cm square of metal. Simultaneously, environmental parameters – temperature and relative humidity – were also measured. Results – Twenty species of fungi in air were identified, being the 4 most commonly isolated the following genera: Cladosporium (40.5%), Alternaria (10.8%), Chrysosporium and Aspergillus (6.8%). In surfaces, 21 species of fungi were identified, being the 4 genera more identified Penicillium (51.8%), Cladosporium (25.4%), Alternaria (6.1%) and Aspergillus (4.2%). In addition, Aspergillus flavus also isolated in the poultry air is a well‑known producer of potent mycotoxins (aflatoxin), and Aspergillus fumigatus, one of the species isolated in air and surfaces, is capable of causing severe or fatal aspergillosis. There was no significant relationship (p>0,05) between fungal contamination and environmental variables. Conclusions – Was characterized fungal distribution in poultry air and surfaces and analyzed the association of environmental variables. It was recognized the Public Health problem because of fungal contamination and also due to probable mycotoxins production with the possible contamination of food products. Fungal contamination, particularly due to the presence of Aspergillus fumigatus and also the possible presence of mycotoxins in the air, should be seen as risk factor in this occupational setting.
Resumo:
A descriptive study was developed to compare air and surfaces fungal contamination in ten hospitals’ food units and two food units from companies. Fifty air samples of 250 litres through impaction method were collected from hospitals’ food units and 41 swab samples from surfaces were also collected, using a 10 by 10 cm square stencil. Regarding the two companies, ten air samples and eight surface samples were collected. Air and surface samples were collected in food storage facilities, kitchen, food plating and canteen. Outdoor air was also collected since this is the place regarded as a reference. Simultaneously, temperature, relative humidity and meal numbers were registered. Concerning air from hospitals’ food units, 32 fungal species were identified, being the two most commonly isolated genera Penicillium sp.
Resumo:
The presence of microorganisms in ophthalmic instruments and surfaces can lead to the exposure of patients to several infections. However, there is no information regarding fungal and bacteria contamination in optical shops. This study aims to characterize fungi and bacteria contamination in air and surfaces from 10 optical shops covering also ophthalmic instruments. Air samples were collected through an impaction method onto malt extract agar (MEA) supplemented with chloramphenicol (0.05%) used for fungi and Tryptic Soy Agar (TSA) supplemented with nystatin (0.2%) used for bacteria. Outdoor samples were also performed to be used as reference. Surface and equipment’s swab samples were also collected side-by-side. All the collected samples were incubated at 27ºC for 5 to 7 days (fungi) or at 30º for 7 days (bacteria). Regarding fungal distribution, thirteen different species/genera were found in the air, being the most common Alternaria sp. (62.0%). Eight different species/genera were identified in the surfaces, ranging from 2 to 5x104 CFU/m2, being the most common A. versicolor complex and Penicillium sp. (40.0%). The trial frames were the most contaminated equipment, since 50.0% of the collected samples were with countless colonies. The airborne bacterial population indicated higher concentrations in the contactology office (average: 133 CFU/m3) than in the client’s waiting rooms (average: 126 CFU/m3). The surface samples indicated bacterial concentrations ranging from 2x104 to 1x106 CFU/m2, pointing out the automatic refractometer as the surface with higher bacterial load.
Resumo:
The permanent contact with cork may lead to constant exposure to fungi, raising awareness as a potential occupational hazard in the cork industry.The presence of fungi belonging to the Penicillium glabrum complex has been associated with the development of respiratory diseases such as suberosis, one of the most prevalent diseases among workers from cork industries, besides occupational asthma. Azoles are used as pesticides but also the first line therapy in the treatment of Aspergillus infections; azole-resistance as been described as to have also an environmental source and is considered an emerging public health problem.The aim of this work was to characterize fungal distribution and to evaluate the presence of azole-resistant Aspergillus isolates in nose swab samples from the cork industry workers.