2 resultados para Conical tubes
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The wettability of polyimide surfaces microstructured using KrF laser radiation at fluences above the material ablation threshold was studied by static contact angle measurements. The laser-treated surfaces present a morphology consisting of conical features whose dimensions and areal density depend on the fluence. The effect of these parameters on the surface apparent contact angle depends on the wetting regime. When wetting occurs in the homogeneous regime, the apparent contact angle of the treated surfaces increases with the radiation fluence because the cone dimensions increase. In contrast, when wetting occurs in the heterogeneous regime, the apparent contact angle increases with the radiation fluence because the average distance between cones increases. The apparent water contact angle of the laser-treated surfaces can reach values as high as 162 degrees, as compared to 75 degrees for virgin polyimide.
Resumo:
We have generalized earlier work on anchoring of nematic liquid crystals by Sullivan, and Sluckin and Poniewierski, in order to study transitions which may occur in binary mixtures of nematic liquid crystals as a function of composition. Microscopic expressions have been obtained for the anchoring energy of (i) a liquid crystal in contact with a solid aligning surface; (ii) a liquid crystal in contact with an immiscible isotropic medium; (iii) a liquid crystal mixture in contact with a solid aligning surface. For (iii), possible phase diagrams of anchoring angle versus dopant concentration have been calculated using a simple liquid crystal model. These exhibit some interesting features including re-entrant conical anchoring, for what are believed to be realistic values of the molecular parameters. A way of relaxing the most drastic approximation implicit in the above approach is also briefly discussed.