7 resultados para Conductive plastics
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Esta dissertação tem como principais objectivos analisar a conformidade das características de revestimentos descontínuos de coberturas produzidos ou comercializados em Portugal com as exigências preconizadas nas normas europeias aplicáveis. Contudo, e tendo em conta a diversidade do tema, o presente estudo centralizou-se em três tipos de revestimentos descontínuos: fibrocimento, metais e plásticos. Optou-se por uma abordagem teórica complementada por uma campanha experimental. No caso da primeira, serão descritas as características de uma cobertura inclinada e alguns dos principais tipos de revestimentos descontínuos existentes. No que concerne à campanha experimental, para além da pesquisa efectuada ao nível do mercado nacional e dos contactos desenvolvidos para a recolha de amostras, realizaram-se ensaios de natureza geométrica de todas as amostras recolhidas. Em suma, a presente dissertação foi validada através de uma campanha experimental simples, que consistiu na análise do cumprimento das exigências das normas europeias aplicáveis aos produtos ensaiados, resultando numa avaliação crítica aos valores obtidos.
Resumo:
A mat of electrospun cellulose fibers are deposed on transparent conductive oxide covered glass, and two such plates enclose a nematic liquid crystal. Thus two new types of Cellulose based Polymer Dispersed Liquid Crystal devices, based on hydroxypropylcellulose and Cellulose Acetate and the nematic liquid crystal E7 have been obtained. The current-voltage characteristics indicates ionic type conduction. Heating-cooling cycles have been applied on the samples and the activation energies have been determined. Simultaneously with the thermo-stimulated currents, the optical transmission dependence on the d.c. electric field and temperature was registered. ON-OFF switching times have been determined for different control voltages. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mestrado em Segurança e Higiene do Trabalho.
Resumo:
Composting is an important process of solid waste management and it can be used for treatment of a variety of different wastes (green waste, household waste, sewage sludge and more). This process aims to: 1. Reduce the volumes of waste and; 2. Create a valuable product which can be recycled as a soil amendment in agriculture and gardening. A natural self-heating process involving the biological degradation of organic matter under aerobic conditions. The handling of waste and compost is responsible for the release of airborne microorganisms and their compounds in the air. Possible contaminants: a) Dust; b) Mesophilic and thermophilic microorganisms; c) Volatile organic compounds; d) Endotoxins and mycotoxins…. Aim: assess exposure/contamination to: a) Volatile organic compounds (VOCs); b) Particulate matter (PM); c) Fungi. In a composting plant located in Lisbon. An additional goal was to identify the workplace with higher level of contamination. In a totally indoor composting plant. The composting operations consisted: 1º Waste already sorted is unloaded in a reception area; 2º Pretreatment - remove undesirable materials from the process (glass, rocks, plastics, metals…); 3º Anaerobic digestion; 4º Dehydration; 5º Open composting with forced aeration. All the process takes thirteen weeks.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil, na Área de Especialização de Hidráulica
Resumo:
An integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, lambda = 632.8 nm) and sheet resistance of 52 Omega/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Omega/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq similar to 2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq similar to 0.973 nm and one with big grains (Rq similar to 3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Tr-max) of 89% and the lowest (Tr-min) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (E-on), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/mu m while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/mu m. These results corroborate the device quality that depends on the base materials and fabrication process used. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Current Electrocardiographic (ECG) signal acquisition methods are generally highly intrusive, as they involve the use of pre-gelled electrodes and cabled sensors placed directly on the person, at the chest or limbs level. Moreover, systems that make use of alternative conductive materials to overcome this issue, only provide heart rate information and not the detailed signal itself. We present a comparison and evaluation of two types of dry electrodes as interface with the skin, targeting wearable and low intrusiveness applications, which enable ECG measurement without the need for any apparatus permanently fitted to the individual. In particular, our approach is targeted at ECG biometrics using signals collected at the hand or finger level. A custom differential circuit with virtual ground was also developed for enhanced usability. Our work builds upon the current stateof-the-art in sensoring devices and processing tools, and enables novel data acquisition settings through the use of dry electrodes. Experimental evaluation was performed for Ag/AgCl and Electrolycra materials, and results show that both materials exhibit adequate performance for the intended application.