3 resultados para Computer Diagnostics

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. In this paper, a new computer-aided diagnosis (CAD) system for steatosis classification, in a local and global basis, is presented. Bayes factor is computed from objective ultrasound textural features extracted from the liver parenchyma. The goal is to develop a CAD screening tool, to help in the steatosis detection. Results showed an accuracy of 93.33%, with a sensitivity of 94.59% and specificity of 92.11%, using the Bayes classifier. The proposed CAD system is a suitable graphical display for steatosis classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os sistemas Computer-Aided Diagnosis (CAD) auxiliam a deteção e diferenciação de lesões benignas e malignas, aumentando a performance no diagnóstico do cancro da mama. As lesões da mama estão fortemente correlacionadas com a forma do contorno: lesões benignas apresentam contornos regulares, enquanto as lesões malignas tendem a apresentar contornos irregulares. Desta forma, a utilização de medidas quantitativas, como a dimensão fractal (DF), pode ajudar na caracterização dos contornos regulares ou irregulares de uma lesão. O principal objetivo deste estudo é verificar se a utilização concomitante de 2 (ou mais) medidas de DF – uma tradicionalmente utilizada, a qual foi designada por “DF de contorno”; outra proposta por nós, designada por “DF de área” – e ainda 3 medidas obtidas a partir destas, por operações de dilatação/erosão e por normalização de uma das medidas anteriores, melhoram a capacidade de caracterização de acordo com a escala BIRADS (Breast Imaging Reporting and Data System) e o tipo de lesão. As medidas de DF (DF contorno e DF área) foram calculadas através da aplicação do método box-counting, diretamente em imagens de lesões segmentadas e após a aplicação de um algoritmo de dilatação/erosão. A última medida baseia-se na diferença normalizada entre as duas medidas DF de área antes e após a aplicação do algoritmo de dilatação/erosão. Os resultados demonstram que a medida DF de contorno é uma ferramenta útil na diferenciação de lesões, de acordo com a escala BIRADS e o tipo de lesão; no entanto, em algumas situações, ocorrem alguns erros. O uso combinado desta medida com as quatro medidas propostas pode melhorar a classificação das lesões.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Computed tomography (CT) is one of the most used modalities for diagnostics in paediatric populations, which is a concern as it also delivers a high patient dose. Research has focused on developing computer algorithms that provide better image quality at lower dose. The iterative reconstruction algorithm Sinogram-Affirmed Iterative Reconstruction (SAFIRE) was introduced as a new technique that reduces noise to increase image quality. Purpose: The aim of this study is to compare SAFIRE with the current gold standard, Filtered Back Projection (FBP), and assess whether SAFIRE alone permits a reduction in dose while maintaining image quality in paediatric head CT. Methods: Images were collected using a paediatric head phantom using a SIEMENS SOMATOM PERSPECTIVE 128 modulated acquisition. 54 images were reconstructed using FBP and 5 different strengths of SAFIRE. Objective measures of image quality were determined by measuring SNR and CNR. Visual measures of image quality were determined by 17 observers with different radiographic experiences. Images were randomized and displayed using 2AFC; observers scored the images answering 5 questions using a Likert scale. Results: At different dose levels, SAFIRE significantly increased SNR (up to 54%) in the acquired images compared to FBP at 80kVp (5.2-8.4), 110kVp (8.2-12.3), 130kVp (8.8-13.1). Visual image quality was higher with increasing SAFIRE strength. The highest image quality was scored with SAFIRE level 3 and higher. Conclusion: The SAFIRE algorithm is suitable for image noise reduction in paediatric head CT. Our data demonstrates that SAFIRE enhances SNR while reducing noise with a possible reduction of dose of 68%.