8 resultados para Complete Equipartite Graphs

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main result of this work is a new criterion for the formation of good clusters in a graph. This criterion uses a new dynamical invariant, the performance of a clustering, that characterizes the quality of the formation of clusters. We prove that the growth of the dynamical invariant, the network topological entropy, has the effect of worsening the quality of a clustering, in a process of cluster formation by the successive removal of edges. Several examples of clustering on the same network are presented to compare the behavior of other parameters such as network topological entropy, conductance, coefficient of clustering and performance of a clustering with the number of edges in a process of clustering by successive removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the sequence of a 9000 bp fragment from the right arm of Saccharomyces cerevisiae chromosome VII. Analysis of the sequence revealed four complete previously unknown open reading frames, which were named G7587, G7589, G7591 and G7594 following standard rules for provisional nomenclature. Outstanding features of some of these proteins were the homology of the putative protein coded by G7589 with proteins involved in transcription regulation and the transmembrane domains predicted in the putative protein coded by G7591.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a general coupling of two identical chaotic dynamical systems, and we obtain the conditions for synchronization. We consider two types of synchronization: complete synchronization and delayed synchronization. Then, we consider four different couplings having different behaviors regarding their ability to synchronize either completely or with delay: Symmetric Linear Coupled System, Commanded Linear Coupled System, Commanded Coupled System with delay and symmetric coupled system with delay. The values of the coupling strength for which a coupling synchronizes define its Window of synchronization. We obtain analytically the Windows of complete synchronization, and we apply it for the considered couplings that admit complete synchronization. We also obtain analytically the Window of chaotic delayed synchronization for the only considered coupling that admits a chaotic delayed synchronization, the commanded coupled system with delay. At last, we use four different free chaotic dynamics (based in tent map, logistic map, three-piecewise linear map and cubic-like map) in order to observe numerically the analytically predicted windows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the notions of equilibrium distribution and time of convergence in discrete non-autonomous graphs. Under some conditions we give an estimate to the convergence time to the equilibrium distribution using the second largest eigenvalue of some matrices associated with the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define nonautonomous graphs as a class of dynamic graphs in discrete time whose time-dependence consists in connecting or disconnecting edges. We study periodic paths in these graphs, and the associated zeta functions. Based on the analytic properties of these zeta functions we obtain explicit formulae for the number of n-periodic paths, as the sum of the nth powers of some specific algebraic numbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a general coupling of two identical chaotic dynamical systems, and we obtain the conditions for synchronization. We consider two types of synchronization: complete synchronization and delayed synchronization. Then, we consider four different couplings having different behaviors regarding their ability to synchronize either completely or with delay: Symmetric Linear Coupled System, Commanded Linear Coupled System, Commanded Coupled System with delay and symmetric coupled system with delay. The values of the coupling strength for which a coupling synchronizes define its Window of synchronization. We obtain analytically the Windows of complete synchronization, and we apply it for the considered couplings that admit complete synchronization. We also obtain analytically the Window of chaotic delayed synchronization for the only considered coupling that admits a chaotic delayed synchronization, the commanded coupled system with delay. At last, we use four different free chaotic dynamics (based in tent map, logistic map, three-piecewise linear map and cubic-like map) in order to observe numerically the analytically predicted windows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let and be matrices over an algebraically closed field. Let be elements of such that and . We give necessary and sufficient condition for the existence of matrices and similar to and, respectively, such that has eigenvalues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we associate a p-periodic nonautonomous graph to each p-periodic nonautonomous Lorenz system with finite critical orbits. We develop Perron-Frobenius theory for nonautonomous graphs and use it to calculate their entropy. Finally, we prove that the topological entropy of a p-periodic nonautonomous Lorenz system is equal to the entropy of its associated nonautonomous graph.