8 resultados para Colloidal silica
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We use a two-dimensional (2D) elastic free energy to calculate the effective interaction between two circular disks immersed in smectic-C films. For strong homeotropic anchoring, the distortion of the director field caused by the disks generates topological defects that induce an effective interaction between the disks. We use finite elements, with adaptive meshing, to minimize the 2D elastic free energy. The method is shown to be accurate and efficient for inhomogeneities on the length scales set by the disks and the defects, that differ by up to 3 orders of magnitude. We compute the effective interaction between two disk-defect pairs in a simple (linear) configuration. For large disk separations, D, the elastic free energy scales as similar to D-2, confirming the dipolar character of the long-range effective interaction. For small D the energy exhibits a pronounced minimum. The lowest energy corresponds to a symmetrical configuration of the disk-defect pairs, with the inner defect at the mid-point between the disks. The disks are separated by a distance that, is twice the distance of the outer defect from the nearest disk. The latter is identical to the equilibrium distance of a defect nucleated by an isolated disk.
Resumo:
The interaction between two disks immersed in a 2D nernatic is investigated i) analytically using the tenser order parameter formalism for the nematic configuration around isolated disks and ii) numerically using finite-element methods with adaptive meshing to minimize the corresponding Landau-de Gennes free energy. For strong homeotropic anchoring, each disk generates a pair of defects with one-half topological charge responsible for the 2D quadrupolar interaction between the disks at large distances. At short distance, the position of the defects may change, leading to unexpected complex interactions with the quadrupolar repulsive interactions becoming attractive. This short-range attraction in all directions is still anisotropic. As the distance between the disks decreases, their preferred relative orientation with respect to the far-field nernatic director changes from oblique to perpendicular.
Resumo:
We investigate the influence of strong directional, or bonding, interactions on the phase diagram of complex fluids, and in particular on the liquid-vapour critical point. To this end we revisit a simple model and theory for associating fluids which consist of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the interactions between each pair of spots have strengths [image omitted], [image omitted] and [image omitted]. The theory is applied over the whole range of bonding strengths and results are interpreted in terms of the equilibrium cluster structures of the coexisting phases. In systems where unlike sites do not interact (i.e. where [image omitted]), the critical point exists all the way to [image omitted]. By contrast, when [image omitted], there is no critical point below a certain finite value of [image omitted]. These somewhat surprising results are rationalised in terms of the different network structures of the two systems: two long AA chains are linked by one BB bond (X-junction) in the former case, and by one AB bond (Y-junction) in the latter. The vapour-liquid transition may then be viewed as the condensation of these junctions and we find that X-junctions condense for any attractive [image omitted] (i.e. for any fraction of BB bonds), whereas condensation of the Y-junctions requires that [image omitted] be above a finite threshold (i.e. there must be a finite fraction of AB bonds).
Resumo:
Agências Financiadoras: Fundação para a Ciência e a Tecnologia - PTDC/FIS/102127/2008 e PTDC/FIS/102127/2008 e SFRH/BPD/78871/2011; Spanish Ministerio de Ciencia e Innovacion - FUNCOAT-CSD2008-00023-CONSOLIDER; Instituto Superior Técnico;
Resumo:
We investigate the thermodynamics and percolation regimes of model binary mixtures of patchy colloidal particles. The particles of each species have three sites of two types, one of which promotes bonding of particles of the same species while the other promotes bonding of different species. We find up to four percolated structures at low temperatures and densities: two gels where only one species percolates, a mixed gel where particles of both species percolate but neither species percolates separately, and a bicontinuous gel where particles of both species percolate separately forming two interconnected networks. The competition between the entropy and the energy of bonding drives the stability of the different percolating structures. Appropriate mixtures exhibit one or more connectivity transitions between the mixed and bicontinuous gels, as the temperature and/or the composition changes.
Resumo:
We investigate the behavior of a patchy particle model close to a hard-wall via Monte Carlo simulation and density functional theory (DFT). Two DFT approaches, based on the homogeneous and inhomogeneous versions of Wertheim's first order perturbation theory for the association free energy are used. We evaluate, by simulation and theory, the equilibrium bulk phase diagram of the fluid and analyze the surface properties for two isochores, one of which is close to the liquid side of the gas-liquid coexistence curve. We find that the density profile near the wall crosses over from a typical high-temperature adsorption profile to a low-temperature desorption one, for the isochore close to coexistence. We relate this behavior to the properties of the bulk network liquid and find that the theoretical descriptions are reasonably accurate in this regime. At very low temperatures, however, an almost fully bonded network is formed, and the simulations reveal a second adsorption regime which is not captured by DFT. We trace this failure to the neglect of orientational correlations of the particles, which are found to exhibit surface induced orientational order in this regime.
Resumo:
Resumo: Cement, as well as the remaining constituents of self-compacting mortars, must be carefully selected, in order to obtain an adequate composition with a granular mix as compact as possible and a good performance in the fresh state (self-compacting effect) and the hardened state (mechanical and durability-related behavior). Therefore in this work the possibility of incorporating nano particles in self-compacting mortars was studied. Nano materials are very reactive due mostly to their high specific surface and show a great potential to improve the properties of these mortars, both in mechanical and durability terms. In this work two nano materials were used, nano silica (nano SiO2) in colloidal state and nano titanium (nano TiO2) in amorphous state, in two types of self-compacting mortars (ratio binder:sand of 1:1 and 1:2). The self-compacting mortar mixes have the same water/cement ratio and 30% of replacement of cement with fly ashes. The influence of nano materials nano-SiO2 and nano-TiO2 on the fresh and hardened state properties of these self-compacting mortars was studied. The results show that the use of nano materials in repair and rehabilitation mortars has significant potential but still needs to be optimized. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The electrorheological (ER) effect is known as the change in the apparent viscosity upon the application of an external electric field perpendicular to the flow direction. In this work we present the electrorheological behaviour of suspensions in silicone oil of two different dispersed phases: foams of liquid crystal 4-n-penthyl-4'-cyanobiphenyl (5CB) encapsulated in polyvinyl alcohol (PVA) and nano/microspheres of 5CB encapsulated in silica. We will present the viscosity curves under the application of an electric field ranging between 0 and 3 kV mm(-1). The ER effect was observed for the suspensions of 5CB/PVA but not in the case of 5CB/silica. For the case of the suspensions of 5CB/PVA, the effect of the viscosity of the continuum phase and the concentration of the dispersed phase was analysed, showing that the enhancement of the viscosity of the suspension increases with the concentration, as expected, however the continuum phase viscosity has no significant effect, at least in the investigated viscosity range.