5 resultados para Climate Leaf Analysis Multivariate Program (CLAMP)
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.
Resumo:
The contribution of the evapotranspiration from a certain region to the precipitation over the same area is referred to as water recycling. In this paper, we explore the spatiotemporal links between the recycling mechanism and the Iberian rainfall regime. We use a 9 km resolution Weather Research and Forecasting simulation of 18 years (1990-2007) to compute local and regional recycling ratios over Iberia, at the monthly scale, through both an analytical and a numerical recycling model. In contrast to coastal areas, the interior of Iberia experiences a relative maximum of precipitation in spring, suggesting a prominent role of land-atmosphere interactions on the inland precipitation regime during this period of the year. Local recycling ratios are the highest in spring and early summer, coinciding with those areas where this spring peak of rainfall represents the absolute maximum in the annual cycle. This confirms that recycling processes are crucial to explain the Iberian spring precipitation, particularly over the eastern and northeastern sectors. Average monthly recycling values range from 0.04 in December to 0.14 in June according to the numerical model and from 0.03 in December to 0.07 in May according to the analytical procedure. Our analysis shows that the highest values of recycling are limited by the coexistence of two necessary mechanisms: (1) the availability of sufficient soil moisture and (2) the occurrence of appropriate synoptic configurations favoring the development of convective regimes. The analyzed surplus of rainfall in spring has a critical impact on agriculture over large semiarid regions of the interior of Iberia.
Resumo:
This paper analyzes the risk-return trade-off in European equities considering both temporal and cross-sectional dimensions. In our analysis, we introduce not only the market portfolio but also 15 industry portfolios comprising the entire market. Several bivariate GARCH models are estimated to obtain the covariance matrix between excess market returns and the industrial portfolios and the existence of a risk-return trade-off is analyzed through a cross-sectional approach using the information in all portfolios. It is obtained evidence for a positive and significant risk-return trade-off in the European market. This conclusion is robust for different GARCH specifications and is even more evident after controlling for the main financial crisis during the sample period.
Resumo:
The aim of this study is to examine the implications of the IPPA in the perception of illness and wellbeing in MS patients. Methods - This is a quasi experimental study non-randomized study with 24 MS patients diagnosed at least 1 year before, and with an EDSS score of under 7. We used the IPPA in 3 groups of eight people in 3 Portuguese hospitals (Lisbon, Coimbra, and Porto). The sessions were held once a week for 90 minutes, over a period of 7 weeks. The instruments used were: We asked the subjects the question Please classify the severity of your disease? and used the Personal Wellbeing Scale (PWS) at the beginning (time A) and end (time B) of the IPPA. We used the SPSS version 20. A non-parametric statistical hypothesis test (Wilcoxon test) was used for the variable analysis. The intervention followed the recommendations of the Helsinki Declaration. Results The results suggest that there are differences between time A and B, the perception of illness decreased (p<0.08), while wellbeing increased (p<0.01). Conclusions: The IPPA can play an important role in modifying the perception of disease severity and personal wellbeing.
Resumo:
One fundamental idea of service-oriented computing is that applications should be developed by composing already available services. Due to the long running nature of service interactions, a main challenge in service composition is ensuring correctness of transaction recovery. In this paper, we use a process calculus suitable for modelling long running transactions with a recovery mechanism based on compensations. Within this setting, we discuss and formally state correctness criteria for compensable processes compositions, assuming that each process is correct with respect to transaction recovery. Under our theory, we formally interpret self-healing compositions, that can detect and recover from faults, as correct compositions of compensable processes. Moreover, we develop an automated verification approach and we apply it to an illustrative case study.