22 resultados para Cellular factors
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and, (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M-1s−1 and ≥ 1.3 × 103 M-1s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.
Resumo:
Amblyopia develops in an early period and is a decrease of visual acuity (unilateral or bilateral) caused by a deprivation of vision or abnormal binocular interaction. Prognosis of Amblyopia is better when occlusive treatment is implemented in an early stage. Visual acuity of amblyopic eye does not improve without effective occlusive therapy. The aim of this study is to identify potential risk factors of noncompliance with treatment when it is implemented by parents in amblyopic children.
Resumo:
Purpose: compliance with treatment is a common problem when treating amblyopic patients. Visual acuity of amblyopic eye does not improve without effective occlusive therapy. The aim of this study is to identify potential risk factors of non-compliance with treatment when it is implemented by family in amblyopic children. Setting: a quantitative transversal study was performed in a public hospital and in a private clinic in Lisbon.
Resumo:
In MIMO systems the antenna array configuration in the BS and MS has a large influence on the available channel capacity. In this paper, we first introduce a new Frequency Selective (FS) MIMO framework for macro-cells in a realistic urban environment. The MIMO channel is built over a previously developed directional channel model, which considers the terrain and clutter information in the cluster, line-of-sight and link loss calculations. Next, MIMO configuration characteristics are investigated in order to maximize capacity, mainly the number of antennas, inter-antenna spacing and SNR impact. Channel and capacity simulation results are presented for the city of Lisbon, Portugal, using different antenna configurations. Two power allocations schemes are considered, uniform distribution and FS spatial water-filling. The results suggest optimized MIMO configurations, considering the antenna array size limitations, specially at the MS side.
Resumo:
Genomic damage is probably the most important fundamental cause of development and degenerative disease. It is also well established that genomic damage is produced by environmental exposure to genotoxins, medical procedures (e.g. radiation and chemicals), micronutrient deficiency (e.g. folate), lifestyle factors (e.g. alcohol, smoking, drugs and stress), and genetic factors such as inherited defects in DNA metabolism and/or repair. Tobacco smoke has been associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Alcohol is definitely a recognized agent that influence cells in a genotoxic form, been citied as a strong agent with potential in the development of carcinogenic lesions. Epidemiological evidence points to a strong synergistic effect between cigarette smoking and alcohol consumption in the induction of cancers in the oral cavity. Approximately 90% of human cancers originate from epithelial cells. Therefore, it could be argued that oral epithelial cells represent a preferred target site for early genotoxic events induced by carcinogenic agents entering the body via inhalation and ingestion. The MN assay in buccal cells was also used to study cancerous and precancerous lesions and to monitor the effects of a number of chemopreventive agents.
Resumo:
Preliminary version
Resumo:
Coordination of apical constriction in epithelial sheets is a fundamental process during embryogenesis. Here, we show that DRhoGEF2 is a key regulator of apical pulsation and constriction of amnioserosal cells during Drosophila dorsal closure. Amnioserosal cells mutant for DRhoGEF2 exhibit a consistent decrease in amnioserosa pulsations whereas overexpression of DRhoGEF2 in this tissue leads to an increase in the contraction time of pulsations. We probed the physical properties of the amnioserosa to show that the average tension in DRhoGEF2 mutant cells is lower than wild-type and that overexpression of DRhoGEF2 results in a tissue that is more solid-like than wild-type. We also observe that in the DRhoGEF2 overexpressing cells there is a dramatic increase of apical actomyosin coalescence that can contribute to the generation of more contractile forces, leading to amnioserosal cells with smaller apical surface than wild-type. Conversely, in DRhoGEF2 mutants, the apical actomyosin coalescence is impaired. These results identify DRhoGEF2 as an upstream regulator of the actomyosin contractile machinery that drives amnioserosa cells pulsations and apical constriction.
Resumo:
Objective: To assess different factors influencing adiponectinemia in obese and normal-weight women; to identify factors associated with the variation (Δ) in adiponectinemia in obese women following a 6-month weight loss program, according to surgical/non-surgical interventions. Methods: We studied 100 normal-weight women and 112 obese premenopausal women; none of them was on any medical treatment. Women were characterized for anthropometrics, daily macronutrient intake, smoking status, contraceptives use, adiponectin as well as IL-6 and TNF-α serum concentrations. Results: Adiponectinemia was lower in obese women (p < 0.001), revealing an inverse association with waist-to-hip ratio (p < 0.001; r = –0.335). Normal-weight women presented lower adiponectinemia among smokers (p = 0.041); body fat, waist-to-hip ratio, TNF-α levels, carbohydrate intake, and smoking all influence adiponectinemia (r 2 = 0.436). After weight loss interventions, a significant modification in macronutrient intake occurs followed by anthropometrics decrease (chiefly after bariatric procedures) and adiponectinemia increase (similar after surgical and non-surgical interventions). After bariatric intervention, Δ adiponectinemia was inversely correlated to Δ waist circumference and Δ carbohydrate intake (r 2 = 0.706). Conclusion: Anthropometrics, diet, smoking, and TNF-α levels all influence adiponectinemia in normal-weight women, although explaining less than 50% of it. In obese women, anthropometrics modestly explain adiponectinemia. Opposite to non-surgical interventions, after bariatric surgery adiponectinemia increase is largely explained by diet composition and anthropometric changes.
Resumo:
Hyperhomocysteinemia (HHcy) is a risk factor for vascular disease, but the underlying mechanisms remain incompletely defined. Reduced bioavailability of nitric oxide (NO) is a principal manifestation of underlying endothelial dysfunction, which is an initial event in vascular disease. Inhibition of cellular methylation reactions by S-adenosylhomocysteine (AdoHcy), which accumulates during HHcy, has been suggested to contribute to vascular dysfunction. However, thus far, the effect of intracellular AdoHcy accumulation on NO bioavailability has not yet been fully substantiated by experimental evidence. The present study was carried out to evaluate whether disturbances in cellular methylation status affect NO production by cultured human endothelial cells. Here, we show that a hypomethylating environment, induced by the accumulation of AdoHcy, impairs NO production. Consistent with this finding, we observed decreased eNOS expression and activity, but, by contrast, enhanced NOS3 transcription. Taken together, our data support the existence of regulatory post-transcriptional mechanisms modulated by cellular methylation potential leading to impaired NO production by cultured human endothelial cells. As such, our conclusions may have implications for the HHcy-mediated reductions in NO bioavailability and endothelial dysfunction.
Resumo:
Attenuated Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only currently available vaccine against tuberculosis. It is highly effective in pre-exposure immunisation against TB in children when administered by subcutaneous route to newborns. However, it does not provide permanent protection in adults. In this work, polymeric chitosan-alginate microparticles have been evaluated as potential nasal delivery systems and mucosal adjuvants for live attenuated BCG. Chitosan (CS) has been employed as adjuvant and mucosal permeation-enhancer, and, together with alginate (ALG), as additive to enhance BCG-loaded microparticles (MPs) cellular uptake in a human monocyte cell line, by particle surface modification. The most suitable particles were used for vaccine formulation and evaluation of immune response following intranasal immunisation of BALB/c mice.
Resumo:
Anticancer activity of the new [Ru(eta(5)-C5H5)(PPh3)(Me(2)bpy)][CF3SO3] (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine) complex was evaluated in vitro against several human cancer cell lines, namely A2780, A2780CisR, HT29, MCF7, MDAMB231 and PC3. Remarkably, the IC50 values, placed in the nanomolar and sub-micromolar range, largely exceeded the activity of cisplatin. Binding to human serum albumin, either HSA (human serum albumin) or HSA(faf) (fatty acid-free human serum albumin) does not affect the complex activity. Fluorescence studies revealed that the present ruthenium complex strongly quench the intrinsic fluorescence of albumin. Cell death by the [Ru(eta(5)-C5H5)(PPh3)(Me(2)bpy)][CF3SO3] complex was reduced in the presence of endocytosis modulators and at low temperature, suggesting an energy-dependent mechanism consistent with endocytosis. On the whole, the biological activity evaluated herein suggests that the complex could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Introduction - The increasing of TB burden is usually related to inadequate case detection, diagnosis and cure. Global targets for TB control, adopted by the World Health Organization (WHO), are to detect 70% of the estimated incidence of sputum smear-positive TB and to cure 85% of newly detected cases of sputum smear-positive TB. Factors associated with unsuccessful treatment outcomes are closely related to TB risk factors. Objectives - To describe treatment success rates in pulmonary TB cases and to identify factors associated with unsuccessful treatment outcomes, according to ad-hoc studies.
Resumo:
The aim of this work is to study the risk of obesity posed by two genetic factors: haptoglobin phenotype and acid phosphatase phenotype, one enzymatic activity: acid phosphatase activity (ACP1), age and gender. Haptoglobin (Hp) is a protein of the immune system, and three phenotypes of Hp are found in humans: Hp1-1, Hp2-1, and Hp2-2. This protein is associated with a susceptibility to common pathological conditions, such as obesity. ACP1 is an intracellular enzyme The phenotypes of ACP1 (AA, AB, AC, BB, BC, CC) are also considered. We took a sample of 127 subjects with complete data from 714 registers. Since we intend to identify risk factors for obesity, an ordinal regression model is adjusted, using the Body Mass Index, BMI, to define weight categories. Haptoglobin phenotype, enzymatic activity of ACP1, acid phosphatase phenotype, age and gender are considered as regressor variables. We found three factors associated with an increased risk of obesity: phenotype Hp2-1 of haptoglobin (estimated odds ratio OR 11.54), phenotype AA of acid phosphatase (OR 33.788) and age (OR 1.39). The interaction between phenotype Hp2-1 and phenotype AC is associated with a decreased risk of obesity (OR 0.032); The interaction between phenotype AA and ACP1 activity is associated with a decreased risk of obesity (OR 0.954).
Resumo:
High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.
Resumo:
Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.