5 resultados para Caudalímetro de Coriolis

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers, corroborating the increased exposure to risk factors, such as fungal load and their metabolites. This study aimed to determine the occupational exposure threat due to fungal contamination caused by the toxigenic isolates belonging to the complex of the species of Aspergillus flavus and also isolates fromAspergillus fumigatus species complex. The study was carried out in seven Portuguese poultries, using cultural and molecularmethodologies. For conventional/cultural methods, air, surfaces, and litter samples were collected by impaction method using the Millipore Air Sampler. For the molecular analysis, air samples were collected by impinger method using the Coriolis μ air sampler. After DNA extraction, samples were analyzed by real-time PCR using specific primers and probes for toxigenic strains of the Aspergillus flavus complex and for detection of isolates from Aspergillus fumigatus complex. Through conventional methods, and among the Aspergillus genus, different prevalences were detected regarding the presence of Aspergillus flavus and Aspergillus fumigatus species complexes, namely: 74.5 versus 1.0% in the air samples, 24.0 versus 16.0% in the surfaces, 0 versus 32.6% in new litter, and 9.9 versus 15.9%in used litter. Through molecular biology, we were able to detect the presence of aflatoxigenic strains in pavilions in which Aspergillus flavus did not grow in culture. Aspergillus fumigatus was only found in one indoor air sample by conventional methods. Using molecular methodologies, however, Aspergillus fumigatus complex was detected in seven indoor samples from three different poultry units. The characterization of fungal contamination caused by Aspergillus flavus and Aspergillus fumigatus raises the concern of occupational threat not only due to the detected fungal load but also because of the toxigenic potential of these species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioaerosols are mainly composed of fungal particles, bacteria and plant spores, being fungi responsible for the release of VOCs and micotoxins into indoor environments. Aspergillus flavus is a common opportunistic pathogen causing human infections and is involved in the production of aflatoxin and other secondary metabolites associated with toxic and allergic reactions. Poultry workers are exposed to high concentrations of fungi and are therefore more prone to develop associated pathologies. To evaluate occupational exposure of the workers to Aspergillus flavus and aflatoxins, six animal production facilities were selected, including 10 buildings, from which indoor air samples and outdoor reference samples were obtained. Twenty-five duplicate samples were collected by two methodologies: impactation onto malt extract agar of 25L air samples using a Millipore Air Tester were used to evaluate quantitative (CFU/m3) and qualitative (species identification, whenever possible) sample composition; 300 L air samples collected with the Coriolis Air Sampler into phosphate–saline buffer were used to isolate DNA, following molecular identification of Aspergillus section flavi using nor-1 specific primers by real-time PCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of mycotoxins on human and animal health is well recognized. Aflatoxin B1 (AFB1) is by far the most prevalent and the most potent natural carcinogen and is usually the major aflatoxin produced by toxigenic fungal strains. Data available, points to an increasing frequency of poultry feed contamination by aflatoxins. Since aflatoxin residues may accumulate in body tissues, this represents a high risk to human health. Samples from commercial poultry birds have already presented detectable levels of aflatoxin in liver. A descriptive study was developed in order to assess fungal contamination by species from Aspergillus flavus complex in seven Portuguese poultry units. Air fungal contamination was studied by conventional and molecular methods. Air, litter and surfaces samples were collected. To apply molecular methods, air samples of 300L were collected using the Coriolis μ air sampler (Bertin Technologies), at 300 L/min airflow rate. For conventional methodologies, all the collected samples were incubated at 27ºC for five to seven days. Through conventional methods, Aspergillus flavus was the third fungal species (7%) most frequently found in 27 indoor air samples analysed and the most commonly isolated species (75%) in air samples containing only the Aspergillus genus...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High loads of fungi have been reported in different types of waste management plants. This study intends to assess fungal contamination in one waste-sorting plant before and after cleaning procedures in order to analyze their effectiveness. Air samples of 50 L were collected through an impaction method, while surface samples, taken at the same time, were collected by the swabbing method and subject to further macro- and microscopic observations. In addition, we collected air samples of 250 L using the impinger Coriolis μ air sampler (Bertin Technologies) at 300 L/min airflow rate in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely Aspergillus fumigatus and Aspergillus flavus complexes, as well as Stachybotrys chartarum species. Fungal quantification in the air ranged from 180 to 5,280 CFU m−3 before cleaning and from 220 to 2,460 CFU m−3 after cleaning procedures. Surfaces presented results that ranged from 29 × 104 to 109 × 104 CFU m−2 before cleaning and from 11 × 104 to 89 × 104 CFU m−2 after cleaning. Statistically significant differences regarding fungal load were not detected between before and after cleaning procedures. Toxigenic strains from A. flavus complex and S. chartarum were not detected by qPCR. Conversely, the A. fumigatus species was successfully detected by qPCR and interestingly it was amplified in two samples where no detection by conventional methods was observed. Overall, these results reveal the inefficacy of the cleaning procedures and that it is important to determine fungal burden in order to carry out risk assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Health effects resulting from dust inhalation in occupational environments may be more strongly associated with specific microbial components, such as fungi, than to the particles. The aim of the present study is to characterize the occupational exposure to the fungal burden in four different occupational settings (two feed industries, one poultry and one waste sorting industry), presenting results from two air sampling methods – the impinger collector and the use of filters. In addition, the equipment used for the filter sampling method allowed a more accurate characterization regarding the dimension of the collected fungal particles (less than 2.5 μm size). Air samples of 300L were collected using the impinger Coriolis μ air sampler. Simultaneously, the aerosol monitor (DustTrak II model 8532, TSI®) allowed assessing viable microbiological material below the 2.5 μm size. After sampling, filters were immersed in 300 mL of sterilized distilled water and agitated for 30 min at 100 rpm. 150 μl from the sterilized distilled water were subsequently spread onto malt extract agar (2%) with chloramphenicol (0.05 g/L). All plates were incubated at 27.5 ºC during 5–7 days. With the impinger method, the fungal load ranged from 0 to 413 CFU.m-3 and with the filter method, ranged from 0 to 64 CFU.m-3. In one feed industry, Penicillium genus was the most frequently found genus (66.7%) using the impinger method and three more fungi species/genera/complex were found. The filter assay allowed the detection of only two species/genera/complex in the same industry. In the other feed industry, Cladosporium sp. was the most found (33.3%) with impinger method and three more species/genera/complex were also found. Through the filter assay four fungi species/genera/complex were found. In the assessed poultry, Rhyzopus sp. was the most frequently detected (61.2%) and more three species/genera/complex were isolated. Through the filter assay, only two fungal species/genera/complex were found. In the waste sorting industry Penicillium sp. was the most prevalent (73.6%) with the impinger method, being isolated two more different fungi species/genera/complex. Through the filter assay only Penicillium sp. was found. A more precise determination of occupational fungal exposure was ensured, since it was possible to obtain information regarding not only the characterization of fungal contamination (impinger method), but also the size of dust particles, and viable fungal particles, that can reach the worker ́s respiratory tract (filters method). Both methods should be used in parallel to enrich discussion regarding potential health effects of occupational exposure to fungi.