9 resultados para Carlsberg Ridge
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
New K/Ar dating and geochemical analyses have been carried out on the WNW-ESE elongated oceanic island of S. Jorge to reconstruct the volcanic evolution of a linear ridge developed close to the Azores triple junction. We show that S. Jorge sub-aerial construction encompasses the last 1.3 Myr, a time interval far much longer than previously reported. The early development of the ridge involved a sub-aerial building phase exposed in the southeast end of the island and now constrained between 1.32 +/- 0.02 and 1.21 +/- 0.02 Ma. Basic lavas from this older stage are alkaline and enriched in incompatible elements, reflecting partial melting of an enriched mantle source. At least three differentiation cycles from alkaline basalts to mugearites are documented within this stage. The successive episodes of magma rising, storage and evolution suggest an intermittent reopening of the magma feeding system, possibly due to recurrent tensional or trans-tensional tectonic events. Present data show a gap in sub-aerial volcanism before a second main ongoing building phase starting at about 750 ka. Sub-aerial construction of the S. Jorge ridge migrated progressively towards the west, but involved several overlapping volcanic episodes constrained along the main WNW-ESE structural axis of the island. Malic magmas erupted during the second phase have been also generated by partial melting of an enriched mantle source. Trace element data suggest, however, variable and lower degrees of partial melting of a shallower mantle domain, which is interpreted as an increasing control of lithospheric deformation on the genesis and extraction of primitive melts during the last 750 kyr. The multi-stage development of the S. Jorge volcanic ridge over the last 1.3 Myr has most likely been greatly influenced by regional tectonics, controlled by deformation along the diffuse boundary between the Nubian and the Eurasian plates, and the increasing effect of sea-floor spreading at the Mid-Atlantic Ridge.
Resumo:
We present a palaeomagnetic study on 38 lava flows and 20 dykes encompassing the past 1.3 Myr on S. Jorge Island (Azores ArchipelagoNorth Atlantic Ocean). The sections sampled in the southeastern and central/western parts of the island record reversed and normal polarities, respectively. They indicate a mean palaeomagnetic pole (81.3 degrees N, 160.7 degrees E, K= 33 and A95= 3.4 degrees) with a latitude shallower than that expected from Geocentric Axial Dipole assumption, suggesting an effect of non-dipolar components of the Earth magnetic field. Virtual Geomagnetic Poles of eight flows and two dykes closely follow the contemporaneous records of the Cobb Mountain Subchron (ODP/DSDP programs) and constrain the age transition from reversed to normal polarity at ca. 1.207 +/- 0.017 Ma. Volcano flank instabilities, probably related to dyke emplacement along an NNWSSE direction, led to southwestward tilting of the lava pile towards the sea. Two spatially and temporally distinct dyke systems have been recognized on the island. The eastern is dominated by NNWSSE trending dykes emplaced before the end of the Matuyama Chron, whereas in the central/western parts the eruptive fissures oriented WNWESE controlled the westward growth of the S. Jorge Island during the Brunhes Chron. Both directions are consistent with the present-day regional stress conditions deduced from plate kinematics and tectonomorphology and suggest the emplacement of dykes along pre-existing fractures. The distinct timing and location of each dyke system likely results from a slight shift of the magmatic source.
Resumo:
We present a palaeomagnetic study on 38 lava flows and 20 dykes encompassing the past 1.3 Myr on S. Jorge Island (Azores ArchipelagoNorth Atlantic Ocean). The sections sampled in the southeastern and central/western parts of the island record reversed and normal polarities, respectively. They indicate a mean palaeomagnetic pole (81.3 degrees N, 160.7 degrees E, K= 33 and A95= 3.4 degrees) with a latitude shallower than that expected from Geocentric Axial Dipole assumption, suggesting an effect of non-dipolar components of the Earth magnetic field. Virtual Geomagnetic Poles of eight flows and two dykes closely follow the contemporaneous records of the Cobb Mountain Subchron (ODP/DSDP programs) and constrain the age transition from reversed to normal polarity at ca. 1.207 +/- 0.017 Ma. Volcano flank instabilities, probably related to dyke emplacement along an NNWSSE direction, led to southwestward tilting of the lava pile towards the sea. Two spatially and temporally distinct dyke systems have been recognized on the island. The eastern is dominated by NNWSSE trending dykes emplaced before the end of the Matuyama Chron, whereas in the central/western parts the eruptive fissures oriented WNWESE controlled the westward growth of the S. Jorge Island during the Brunhes Chron. Both directions are consistent with the present-day regional stress conditions deduced from plate kinematics and tectonomorphology and suggest the emplacement of dykes along pre-existing fractures. The distinct timing and location of each dyke system likely results from a slight shift of the magmatic source.
Resumo:
Shelves surrounding reefless volcanic ocean islands are formed by surf erosion of their slopes during changing sea levels. Posterosional lava flows, if abundant, can cross the coastal cliffs and fill partially or completely the accommodation space left by erosion. In this study, multibeam bathymetry, high-resolution seismic reflection profiles, and sediment samples are used to characterize the morphology of the insular shelves adjacent to Pico Island. The data show offshore fresh lava flow morphologies, as well as an irregular basement beneath shelf sedimentary bodies and reduced shelf width adjacent to older volcanic edifices in Pico. These observations suggest that these shelves have been significantly filled by volcanic progradation and can thus be classified as rejuvenated. Despite the general volcanic infilling of the shelves around Pico, most of their edges are below the depth of the Last Glacial Maximum, revealing that at least parts of the island have subsided after the shelves formed by surf erosion. Prograding lava deltas reached the shelf edge in some areas triggering small slope failures, locally decreasing the shelf width and depth of their edges. These areas can represent a significant risk for the local population; hence, their identification can be useful for hazard assessment and contribute to wiser land use planning. Shelf and subaerial geomorphology, magnetic anomalies and crustal structure data of the two islands were also interpreted to reconstruct the long-term combined onshore and offshore evolution of the Faial-Pico ridge. The subaerial emergence of this ridge is apparently older than previously thought, i.e., before approximate to 850 ka.
Resumo:
Seismic recordings of IRIS/IDA/GSN station CMLA and of several temporary stations in the Azores archipelago are processed with P and S receiver function (PRF and SRF) techniques. Contrary to regional seismic tomography these methods provide estimates of the absolute velocities and of the Vp/Vs ratio up to a depth of similar to 300 km. Joint inversion of PRFs and SRFs for a few data sets consistently reveals a division of the subsurface medium into four zones with a distinctly different Vp/Vs ratio: the crust similar to 20 km thick with a ratio of similar to 1.9 in the lower crust, the high-Vs mantle lid with a strongly reduced VpNs velocity ratio relative to the standard 1.8, the low-velocity zone (LVZ) with a velocity ratio of similar to 2.0, and the underlying upper-mantle layer with a standard velocity ratio. Our estimates of crustal thickness greatly exceed previous estimates (similar to 10 km). The base of the high-Vs lid (the Gutenberg discontinuity) is at a depth of-SO km. The LVZ with a reduction of S velocity of similar to 15% relative to the standard (IASP91) model is terminated at a depth of similar to 200 km. The average thickness of the mantle transition zone (TZ) is evaluated from the time difference between the S410p and SKS660p, seismic phases that are robustly detected in the S and SKS receiver functions. This thickness is practically similar to the standard IASP91 value of 250 km. and is characteristic of a large region of the North Atlantic outside the Azores plateau. Our data are indicative of a reduction of the S-wave velocity of several percent relative to the standard velocity in a depth interval from 460 to 500 km. This reduction is found in the nearest vicinities of the Azores, in the region sampled by the PRFs, but, as evidenced by SRFs, it is missing at a distance of a few hundred kilometers from the islands. We speculate that this anomaly may correspond to the source of a plume which generated the Azores hotspot. Previously, a low S velocity in this depth range was found with SRF techniques beneath a few other hotspots.
Resumo:
We present a study of the magnetic properties of a group of basalt samples from the Saldanha Massif (Mid-Atlantic Ridge - MAR - 36degrees 33' 54" N, 33degrees 26' W), and we set out to interpret these properties in the tectono-magmatic framework of this sector of the MAR. Most samples have low magnetic anisotropy and magnetic minerals of single domain grain size, typical of rapid cooling. The thermomagnetic study mostly shows two different susceptibility peaks. The high temperature peak is related to mineralogical alteration due to heating. The low temperature peak shows a distinction between three different stages of low temperature oxidation: the presence of titanomagnetite, titanomagnetite and titanomaghemite, and exclusively of titanomaghemite. Based on established empirical relationships between Curie temperature and degree of oxidation, the latter is tentatively deduced for all samples. Finally, swath bathymetry and sidescan sonar data combined with dive observations show that the Saldanha Massif is located over an exposed section of upper mantle rocks interpreted to be the result of detachment tectonics. Basalt samples inside the detachment zone often have higher than expected oxidation rates; this effect can be explained by the higher permeability caused by the detachment fault activity.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Protecção contra Radiações
Resumo:
This work addresses the present-day (<100 ka) mantle heterogeneity in the Azores region through the study of two active volcanic systems from Terceira Island. Our study shows that mantle heterogeneities are detectable even when "coeval" volcanic systems (Santa Barbara and Fissural) erupted less than 10 km away. These volcanic systems, respectively, reflect the influence of the Terceira and D. Joao de Castro Bank end-members defined by Beier et at (2008) for the Terceira Rift Santa Barbara magmas are interpreted to be the result of mixing between a HIMU-type component, carried to the upper mantle by the Azores plume, and the regional depleted MORB magmas/source. Fissural lavas are characterized by higher Ba/Nb and Nb/U ratios and less radiogenic Pb-206/Pb-204, Nd-143/Nd-144 and Hf-176/Hf-177, requiring the small contribution of delaminated sub-continental lithospheric mantle residing in the upper mantle. Published noble gas data on lavas from both volcanic systems also indicate the presence of a relatively undegassed component, which is interpreted as inherited from a lower mantle reservoir sampled by the ascending Azores plume. As inferred from trace and major elements, melting began in the garnet stability field, while magma extraction occurred within the spinel zone. The intra-volcanic system's chemical heterogeneity is mainly explained by variable proportions of the above-mentioned local end-members and by crystal fractionation processes. (C) 2011 Elsevier By. All rights reserved.
Resumo:
With very few exceptions, M > 4 tectonic earthquakes in the Azores show normal fault solution and occur away from the islands. Exceptionally, the 1998 shock was pure strike-slip and occurred within the northern edge of the Pico-Faial Ridge. Fault plane solutions show two possible planes of rupture striking ENE-WSW (dextral) and NNW-SSE (sinistral). The former has not been recognised in the Azores, but is parallel to the transform direction related to the relative motion between the Eurasia and Nubia plates. Therefore, the main question we address in the present study is: do transform faults related to the Eurasia/Nubia plate boundary exist in the Azores? Knowing that the main source of strain is related to plate kinematics, we conclude that the sinistral strike-slip NNW-SSE fault plane solution is not consistent with either the fault dip (ca. 65, which is typical of a normal fault) or the ca. ENE-WSW direction of maximum extension; both are consistent with a normal fault, as observed in most major earthquakes on faults striking around NNW-SSE in the Azores. In contrast, the dextral strike-slip ENE-WSW fault plane solution is consistent with the transform direction related to the anticlockwise rotation of Nubia relative to Eurasia. Altogether, tectonic data, measured ground motion, observed destruction, and modelling are consistent with a dextral strike-slip source fault striking ENE-WSW. Furthermore, the bulk clockwise rotation measured by GPS is typical of bookshelf block rotations observed at the termination of such master strike-slip faults. Therefore, we suggest that the 1998 earthquake can be related to the WSW termination of a transform (ENE-WSW fault plane solution) associated with the Nubia-Eurasia diffuse plate boundary. (C) 2014 Elsevier B.V. All rights reserved.