4 resultados para Cardiometabolic profile
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In this paper, the design of low profile antennas by using Electromagnetic Band Gap (EBG) structures is introduced. Taking advantage of the fact that they can behave as Perfect Magnetic Conductor (PMC), it is shown that these structures exhibit dual band in-phase reflection at WLAN (Wireless Local Area Network) bands, the 2.4 GHz and 5.2 GHz bands. These structures are applied to PIFA (Planar Inverted-F Antenna) and the results show that it is possible to obtain low profile PIFA's.
Resumo:
A new high performance architecture for the computation of all the DCT operations adopted in the H.264/AVC and HEVC standards is proposed in this paper. Contrasting to other dedicated transform cores, the presented multi-standard transform architecture is supported on a completely configurable, scalable and unified structure, that is able to compute not only the forward and the inverse 8×8 and 4×4 integer DCTs and the 4×4 and 2×2 Hadamard transforms defined in the H.264/AVC standard, but also the 4×4, 8×8, 16×16 and 32×32 integer transforms adopted in HEVC. Experimental results obtained using a Xilinx Virtex-7 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which outperforms its more prominent related designs by at least 1.8 times. When integrated in a multi-core embedded system, this architecture allows the computation, in real-time, of all the transforms mentioned above for resolutions as high as the 8k Ultra High Definition Television (UHDTV) (7680×4320 @ 30fps).
Resumo:
Background: Obesity is associated with increased atherogenesis through alterations in lipids, among other potential factors. Some of those abnormalities might be mediated by insulin resistance (IR). Aims: To compare lipid and apolipoprotein profile between lean and obese women; to evaluate the influence of IR on lipid and apolipoprotein profile, in obese women. Methods: We studied 112 obese and 100 normal-weight premenopausal women without known cardiovascular disease. Both groups were characterized for anthropometrics and a fasting blood sample was collected for assessment of glucose, insulin, triglycerides, cholesterol (total, LDL and HDL), and apolipoproteins A-I, A-II, B, C-II, C-III, and E; IR was assessed by the homeostatic model assessment (HOMA-IR). We compared lipids between obese and lean women; we looked for correlation of those levels with anthropometrics and IR (independently from anthropometrics) in obese women. Results: Obese women were characterized by mean age=34.6±8.3 years, BMI=43.6±7.9 kg/m2, waist circumference (Wc)=117.5±15.1 cm, and HOMA-IR=4.28±3.5. Lean women (age=34.2±8.3 years, BMI=21.4±1.7 kg/m2, Wc=71.7±5.8 cm, and HOMA-IR=1.21±0.76) presented with significantly lower levels of total cholesterol (P=0.001), LDL-cholesterol (P<0.001), and triglycerides (P<0.001); they presented higher levels of HDL-cholesterol (P<0.001), Apo A-I (P<0.001) and Apo A-II (P=0.037). HOMA-IR showed no significant association with apolipoproteins. HOMA-IR was inversely associated with HDL-cholesterol (P=0.048; r=−0.187) but that association disappeared when we adjusted for waist circumference. Only triglycerides were directly associated with HOMA-IR (P<0.001; r=0.343) independently from anthropometrics. Conclusion: We confirm that obese women present worst lipid and apolipoprotein profile. However, with the exception for triglycerides, insulin resistance per se does not play a major role in lipid and apolipoprotein abnormalities observed in obese women.
Resumo:
The erosion depth profile of planar targets in balanced and unbalanced magnetron cathodes with cylindrical symmetry is measured along the target radius. The magnetic fields have rotational symmetry. The horizontal and vertical components of the magnetic field B are measured at points above the cathode target with z = 2 x 10(-3) m. The experimental data reveal that the target erosion depth profile is a function of the angle. made by B with a horizontal line defined by z = 2 x 10(-3) m. To explain this dependence a simplified model of the discharge is developed. In the scope of the model, the pathway lengths of the secondary electrons in the pre-sheath region are calculated by analytical integration of the Lorentz differential equations. Weighting these lengths by using the distribution law of the mean free path of the secondary electrons, we estimate the densities of the ionizing events over the cathode and the relative flux of the sputtered atoms. The expression so deduced correlates for the first time the erosion depth profile of the target with the angle theta. The model shows reasonably good fittings to the experimental target erosion depth profiles confirming that ionization occurs mainly in the pre-sheath zone.