15 resultados para Capsule dynamics

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K, C-0) and (K, sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K-c decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative contribution of European Union Allowances (EUAs) and Certified Emission Reductions (CERs) to the price discovery of their common true value has been empirically studied using daily data with inconclusive results. In this paper, we study the short-run and long-run price dynamics between EUAs and CERs future contracts using intraday data. We report a bidirectional feedback causality relationship both in the short-run and in the long-run, with the EUA's market being the leader.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that together efficiently interact with and dissociate the tubulin dimer. In the study reported here we showed that TBCB localizes at spindle and midzone microtubules during mitosis. Furthermore, the motif DEI/M-COO− present in TBCB, which is similar to the EEY/F-COO− element characteristic of EB proteins, CLIP-170, and α-tubulin, is required for TBCE–TBCB heterodimer formation and thus for tubulin dimer dissociation. This motif is responsible for TBCB autoinhibition, and our analysis suggests that TBCB is a monomer in solution. Mutants of TBCB lacking this motif are derepressed and induce microtubule depolymerization through an interaction with EB1 associated with microtubule tips. TBCB is also able to bind to the chaperonin complex CCT containing α-tubulin, suggesting that it could escort tubulin to facilitate its folding and dimerization, recycling or degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper was to introduce the symbolic formalism based on kneading theory, which allows us to study the renormalization of non-autonomous periodic dynamical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A maioria dos órgãos históricos portugueses data dos finais do século XVIII ou do princípio do século XIX. Durante este período foi construído um invulgar número de instrumentos em Lisboa e nas áreas circundantes por António Xavier Machado e Cerveira (1756-1828) e outros organeiros menos prolíficos. O estudo desses órgãos, muitos dos quais (restaurados ou não) se encontram próximos das condições originais, permite a identificação de um tipo de instrumento com uma morfologia específica, claramente emancipada do chamado «órgão ibérico». No entanto, até muito recentemente, não era conhecida música que se adaptasse às idiossincrasisas daqueles instrumentos. O recente estudo das obras para órgão de José Marques e Silva (1782-1837) permitiu clarificar esta situação. Bem conhecido durante a sua vida como organista e compositor, José Marques e Silva foi um dos ultimos mestres do Seminário Patriarcal. A importância da sua produção musical reside não só num substancial número de obras com autoria firmemente estabelecida – escritas, na maior parte, para coro misto com acompanhamento de órgão obbligato – mas também na íntima relação entre a sua escrita e a morfologia dos órgãos construídos em Portugal durante a sua vida. Este artigo enfatiza a importância de José Marques e Silva (indubitavelmente, o mais significativo compositor português para órgão do seu tempo) sublinhando a relevância das suas obras para órgão solo, cujo uso extensivo de escrita idiomática e indicações de registação fazem delas um dos mais importantes documentos só início do século XIX sobre a prática organística em Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concerns dynamics and bifurcations properties of a class of continuous-defined one-dimensional maps, in a three-dimensional parameter space: Blumberg's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon, associated with the stability of a fixed point. A central point of our investigation is the study of bifurcations structure for this class of functions. We verified that under some sufficient conditions, Blumberg's functions have a particular bifurcations structure: the big bang bifurcations of the so-called "box-within-a-box" type, but for different kinds of boxes. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct attractors. This work contributes to clarify the big bang bifurcation analysis for continuous maps. To support our results, we present fold and flip bifurcations curves and surfaces, and numerical simulations of several bifurcation diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Team sports represent complex systems: players interact continuously during a game, and exhibit intricate patterns of interaction, which can be identified and investigated at both individual and collective levels. We used Voronoi diagrams to identify and investigate the spatial dynamics of players' behavior in Futsal. Using this tool, we examined 19 plays of a sub-phase of a Futsal game played in a reduced area (20 m(2)) from which we extracted the trajectories of all players. Results obtained from a comparative analysis of player's Voronoi area (dominant region) and nearest teammate distance revealed different patterns of interaction between attackers and defenders, both at the level of individual players and teams. We found that, compared to defenders, larger dominant regions were associated with attackers. Furthermore, these regions were more variable in size among players from the same team but, at the player level, the attackers' dominant regions were more regular than those associated with each of the defenders. These findings support a formal description of the dynamic spatial interaction of the players, at least during the particular sub-phase of Futsal investigated. The adopted approach may be extended to other team behaviors where the actions taken at any instant in time by each of the involved agents are associated with the space they occupy at that particular time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as the ‘Von Magnus effect’. Interference by DI viruses has been proposed to underlie these dynamics, although experimental tests of this idea have not been forthcoming. For the baculoviruses, insect viruses commonly used for the expression of heterologous proteins in insect cells, the molecular mechanisms underlying DI generation have been investigated. However, the dynamics of baculovirus populations harboring DIs have not been studied in detail. In order to address this issue, we used quantitative real-time PCR to determine the levels of helper and DI viruses during 50 serial passages of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Sf21 cells. Unexpectedly, the helper and DI viruses changed levels largely in phase, and oscillations were highly irregular, suggesting the presence of chaos. We therefore developed a simple mathematical model of baculovirus-DI dynamics. This theoretical model reproduced patterns qualitatively similar to the experimental data. Although we cannot exclude that experimental variation (noise) plays an important role in generating the observed patterns, the presence of chaos in the model dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI viruses, using mutation as a control parameter. Our results contribute to a better understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels over passages may exhibit chaos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose and its derivatives, such as hydroxypropylcellulose (HPC) have been studied for a long time but they are still not well understood particularly in liquid crystalline solutions. These systems can be at the origin of networks with properties similar to liquid crystalline (LC) elastomers. The films produced from LC solutions can be manipulated by the action of moisture allowing for instance the development of a soft motor (Geng et al., 2013) driven by humidity. Cellulose nanocrystals (CNC), which combine cellulose properties with the specific characteristics of nanoscale materials, have been mainly studied for their potential as a reinforcing agent. Suspensions of CNC can also self-order originating a liquid-crystalline chiral nematic phases. Considering the liquid crystalline features that both LC-HPC and CNC can acquire, we prepared LC-HPC/CNC solutions with different CNC contents (1,2 and 5 wt.%). The effect of the CNC into the LC-HPC matrix was determined by coupling rheology and NMR spectroscopy - Rheo-NMR a technique tailored to analyse orientational order in sheared systems. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.