2 resultados para CYCLE CONTROL

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new driving scheme utilizing an in-pixel metal-insulator-semiconductor (MIS) photosensor for luminance control of active-matrix organic light-emitting diode (AMOLED) pixel. The proposed 3-TFT circuit is controlled by an external driver performing the signal readout, processing, and programming operations according to a luminance adjusting algorithm. To maintain the fabrication simplicity, the embedded MIS photosensor shares the same layer stack with pixel TFTs. Performance characteristics of the MIS structure with a nc-Si : H/a-Si : H bilayer absorber were measured and analyzed to prove the concept. The observed transient dark current is associated with charge trapping at the insulator-semiconductor interface that can be largely eliminated by adjusting the bias voltage during the refresh cycle. Other factors limiting the dynamic range and external quantum efficiency are also determined and verified using a small-signal model of the device. Experimental results demonstrate the feasibility of the MIS photosensor for the discussed driving scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.