18 resultados para COPPER ELECTRODEPOSITION

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The progress of hydrogen generation by sodium borohydride hydrolysis depends highly on the development of efficient catalysts based on non-noble metals such as cobalt. However, such catalysts undergo extensive deactivation which has a detrimental effect on their stability. Herein, highly porous copper and cobalt-based bimetallic foams, CuxCo100-x (x = 0-100 at%), produced by electrodeposition using the dynamic hydrogen bubble template are reported. The chemical composition of the foams was optimized in order to enhance specific surface area and improve their catalytic activity and stability as heterogeneous catalysts for sodium borohydride hydrolysis. Among the tested catalysts, copper-rich samples like Cu85Co15 are slightly more active than Co-100 and above all, they are less sensitive to deactivation by borates adsorption. Porous copper-rich foams were found to be an alternative to cobalt as low-cost, active and stable heterogeneous catalysts for hydrogen generation by hydrolysis of sodium borohydride. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C6H4-NHN = C{C(= O)CH3}(2) bearing a substituent in the ortho-position [X = OH (H2L1) 1, AsO3H2 (H3L2) 2, Cl (HL3) 3, SO3H (H2L4) 4, COOCH3 (HL5) 5, COOH (H2L6) 6, NO2 (HL7) 7 or H (HL8) 8] lead to a variety of complexes including the monomeric [CuL4(H2O)(2)]center dot H2O 10, [CuL4(H2O)(2)] 11 and [Cu(HL4)(2)(H2O)(4)] 12, the dimeric [Cu-2(H2O)(2)(mu-HL2)(2)] 9 and the polymeric [Cu(mu-L-6)](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H2O)(4){NCNC(NH2)(2)}(2)](HL4)(2)center dot 6H(2)O 14 and the heteroligand polymer [Cu(mu-L-4)(im)](n) 15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, H-1 and C-13 NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L-8)(H2O)]center dot H2O, [Cu(L-1)(H2O)(2)]center dot H2O and [Cu(L-4)(H2O)(2)]center dot H2O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H2O2) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H2O (total yields of ca. 20% with TONs up to 566), under mild conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copper C(2)-symmetric bis(oxazoline), CuBox, was introduced in two forms of commercial Y zeolite: a sodium form (NaY) and an ultrastable form (NaUSY). CuBox was introduced by first partially exchanging the sodium cations of both zeolites for copper and then by refluxing the obtained materials with a solution of bis(oxazoline) (Box). Two different loadings were prepared for each form of zeolite. The materials were characterized by copper ICP-AES, elemental analysis, XPS, FTIR, TG, and nitrogen adsorption isotherms at -196 degrees C. Evidence for Box ligand location in the supercages of NaY and NaUSY zeolites and its coordination to the exchanged copper(II) was obtained by the several techniques used. The materials were all active in the cyclopropanation of styrene with ethyldiazoacetate at room temperature and diastereoselective toward trans cydopropanes. Although the materials containing Box showed low enantioselectivities, their catalytic activities were higher than the parent copper exchanged zeolites, and did not decrease with reuse, at least during three consecutive cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copper(II) chiral aza-bis(oxazoline) homogeneous catalyst (CuazaBox) was anchored onto the external surface of MCM-22 and ITQ-2 structures, as well as encapsulated into hierarchical MCM-22. The transition metal complex loading onto the porous solids was determined by ICP-AES and the materials were also characterized by elemental analysis (C, N, H, S), FTIR, XPS, TG and low temperature N-2 adsorption isotherms. The materials were tested as heterogeneous catalysts in the benchmark reaction of cyclopropanation of styrene to check the effect of the immobilization procedure on the catalytic parameters, as well as on their reutilization in several catalytic cycles. Catalyst CuazaBox anchored onto the external surface of MCM-22 and ITQ-2 materials were more active and enantioselective in the cyclopropanation of styrene than the corresponding homogeneous phase reaction run under similar experimental conditions. This is due to the propylation of the acidic aza-Box nitrogen. HMCM-22 was nevertheless the best heterogeneous catalyst. Encapsulation of CuazaBox on post-synthesis modified MCM-22 materials led to low activities and enantioselectivities. But reversal on the stereochemical course of the reaction was observed, probably due to confinement effect. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new metal- organic compounds {[Cu-3(mu(3)-4-(p)tz)(4)(mu(2)-N-3)(2)(DMF)(2)](DMF)(2)}(n) (1) and {[Cu(4ptz) (2)(H2O)(2)]}(n) (2) {4-ptz = 5-(4-pyridyl)tetrazolate} with 3D and 2D coordination networks, respectively, have been synthesized while studying the effect of reaction conditions on the coordination modes of 4-pytz by employing the [2 + 3] cycloaddition as a tool for generating in situ the 5-substituted tetrazole ligands from 4-pyridinecarbonitrile and NaN3 in the presence of a copper(II) salt. The obtained compounds have been structurally characterized and the topological analysis of 1 discloses a topologically unique trinodal 3,5,6-connected 3D network which, upon further simplification, results in a uninodal 8-connected underlying net with the bcu (body centred cubic) topology driven by the [Cu-3(mu(2)-N-3)(2)] cluster nodes and mu(3)-4-ptz linkers. In contrast, the 2D metal-organic network in 2 has been classified as a uninodal 4-connected underlying net with the sql [Shubnikov tetragonal plane net] topology assembled from the Cu nodes and mu(2)-4-ptz linkers. The catalytic investigations disclosed that 1 and 2 act as active catalyst precursors towards the microwave-assisted homogeneous oxidation of secondary alcohols (1-phenylethanol, cyclohexanol, 2-hexanol, 3-hexanol, 2-octanol and 3-octanol) with tert-butylhydroperoxide, leading to the yields of the corresponding ketones up to 86% (TOF = 430 h(-1)) and 58% (TOF = 290 h(-1)) in the oxidation of 1-phenylethanol and cyclohexanol, respectively, after 1 h under low power ( 10 W) microwave irradiation, and in the absence of any added solvent or additive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions between 4'-phenyl-terpyridine (L) and nitrate, acetate or chloride Cu(II) salts led to the formation of [Cu(NO3)(2)L] (1), [Cu(OCOCH3)(2)L]center dot CH2Cl2 (2 center dot CH2Cl2)and [CuCl2L]center dot[Cu(Cl)(mu-Cl)L](2) (3), respectively. Upon dissolving 1 in mixtures of DMSO-MeOH or EtOH-DMF the compounds [Cu(H2O){OS(CH3)(2)}L]-(NO3)(2) (4) and [Cu(HO)(CH3CH2OH)L](NO3) (5) were obtained, in this order. Reaction of 3 with AgSO3CF3 led to [CuCl(OSO2CF3)L] (6). The compounds were characterized by ESI-MS, IR, elemental analysis, electrochemical techniques and, for 2-6, also by single crystal X-ray diffraction. They undergo, by cyclic voltammetry, two single-electron irreversible reductions assigned to Cu(II) -> Cu(I)and Cu(I) -> Cu(0) and, for those of the same structural type, the reduction potential appears to correlate with the summation of the values of the Lever electrochemical EL ligand parameter, which is reported for the first time for copper complexes. Complexes 1-6 in combination with TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl radical) can exhibit a high catalytic activity, under mild conditions and in alkaline aqueous solution, for the aerobic oxidation of benzylic alcohols. Molar yields up to 94% (based on the alcohol) with TON values up to 320 were achieved after 22 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new tetranuclear complexes [Cu-4(mu-O)(L-1)-Cl-4] and [Cu-4(mu(4)-O)(L-2)(2)Cl-4] (2), where H2L1 is a macrocyclic ligand resulting from [2+2] condensation of 2,6-diformy1-4-methylphanol (DFF) and 1,3-bis(aminopropy1)tetramethyldisiloxane, and HL2 is a 1:2 condensation product: of DFF with trimethylsilyl p-aminobenzoate, have been prepared. The structures of the products were established by Xray diffraction. The complexes have been characterised by FTIR, UV/Vis spectroscopy, ES1 mass-spectrometry and magnetic susceptibility measurements. The latter revealed that the letrftriuclear complexes can be descr bed as two ferromagnetically coupled dinuclear units, in which the two copper(II) ions interact antiferromacinetically. The ccimpi.iunds act as homogeneous catalyst precursors for a number of single-pot reactions, including (I) hydrocarbaxylation, with CO, H2O and K2S2O8, of a variety of linear and cyclic (n = 5-8) alkanes into the corresponding Cn+1 carboxylic acids, (ii) peroxidative oxidation of cyclohexane, and (iii) solvent-free microwave-assisted oxidation of 1-phenyletha.nol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of copper(II) complexes of pentane-2,4-dione and 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, [Cu(acac)(2) (1) and [Cu(HFacac)(2)(H2O)] (2), in ionic liquids and molecular organic solvents, was studied by spectroscopic and electrochemical techniques. The electron paramagnetic resonance characterization (EPR) showed well-resolved spectra in most solvents. In general the EPR spectra of [Cu(acac)(2)] show higher g(z) values and lower hyperfine coupling constants, A(z), in ionic liquids than in organic solvents, in agreement with longer Cu-O bond lengths and higher electron charge in the copper ion in the ionic liquids, suggesting coordination of the ionic liquid anions. For [Cu(HFacac)(2)(H2O)] the opposite was observed suggesting that in ionic liquids there is no coordination of the anions and that the complex is tetrahedrically distorted. The redox properties of the Cu(II) complexes were investigated by cyclic voltammetry (CV) at a Pt electrode (d = 1 mm), in bmimBF(4) and bmimNTf(2) ionic liquids and, for comparative purposes, in neat organic solvents. The neutral copper(II) complexes undergo irreversible reductions to Cu(I) and Cu(0) species in both ILs and common organic solvents (CH2Cl2 or acetonitrile), but, in ILs, they are usually more easier to reduce (less cathodic reduction potential) than in the organic solvents. Moreover, 1 and 2 are easier to reduce in bmimNTf(2) than in bmimBF(4) ionic liquid. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of two cationic copper complexes of acetylacetonate and 2,2'-bipyridine or 1,10-phenanthroline, [Cu(acac)(bipy)]Cl (1) and [Cu(acac)(phen)]Cl (2), in organic solvents and ionic liquids, was studied by spectroscopic and electrochemical techniques. Both complexes showed solvatochromism in ionic liquids although no correlation with solvent parameters could be obtained. By EPR spectroscopy rhombic spectra with well-resolved superhyperfine structure were obtained in most ionic liquids. The spin Hamiltonian parameters suggest a square pyramidal geometry with coordination of the ionic liquid anion. The redox properties of the complexes were investigated by cyclic voltammetry at a Pt electrode (d = 1 mm) in bmimBF(4) and bmimNTf(2) ionic liquids. Both complexes 1 and 2 are electrochemically reduced in these ionic media at more negative potentials than when using organic solvents. This is in agreement with the EPR characterization, which shows lower A(z) and higher g(z) values for the complexes dissolved in ionic liquids, than in organic solvents, due to higher electron density at the copper center. The anion basicity order obtained by EPR is NTf2-, N(CN)(2)(-), MeSO4- and Me2PO4-, which agrees with previous determinations. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the tris(3-phenylpyrazolyl)methane sulfonate species (Tpms(Ph))Li with the copper(I) complex [Cu(MeCN)(4)][PF6] affords [Cu(Tpms(Ph))(MeCN)] 1. The latter, upon reaction with equimolar amounts of cyclohexyl-(CyNC) or 2,6-dimethylphenyl (XylNC) isocyanides, or excess CO, furnishes the corresponding Cu(I)complexes [Cu(Tpms(Ph))(CNR)] (R = Cy 2, Xyl 3) or [Cu(Tpms(Ph))(CO)] 4. The ligated isocyanide in 2 or 3 (or the acetonitrile ligand in 1)is displaced by 3-iminoisoindolin-1-one to afford 5, the first copper(I) complex containing an 3-iminoisoindolin-1-one ligand. The ligated acetonitrile in 1 undergoes nucleophilic attack by methylamine to give the amidine complex [Cu(Tpms(Ph)){MeC(NH)NHMe}] 6, whereas only the starting materials were recovered from the attempted corresponding reactions of 2 and 3 with methylamine. Complexes 1 or 6 form the trinuclear hydroxo-copper(II)species [(mu-Cu){Cu(mu-OH) (2)(Tpms(Ph))}(2)] 7 upon air oxidation in moist methanol. In all the complexes the scorpionate ligand facially caps the metal in the N,N,O-coordination mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper iron (Cu-Fe) 3D porous foams for supercapacitor electrodes were electrodeposited in the cathodic regime, on stainless steel current collectors, using hydrogen bubbling dynamic template. The foams were prepared at different current densities and deposition times. The foams were submitted to thermal conditioning at temperatures of 150 and 250 degrees C. The morphology, composition and structure of the formed films were studied by SEM, EDS and XRD, respectively. The electrochemical behaviour was studied by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. The morphology of the 3D Cu-Fe foams is sensitive to the electrodeposition current and time. The increase of the current density produces a denser, larger and more ramified dendritic structure. Thermal conditioning at high temperature induces a coarser grain structure and the formation of copper oxides, which affect the electrochemical behaviour. The electrochemical response reveals the presence of various redox peaks assigned to the oxidation and reduction of Cu and Fe oxides and hydroxides in the foams. The specific capacitance of the 3D Cu Fe foams was significantly enhanced by thermal conditioning at 150 degrees C. The highest specific capacitance values attained 297 Fg(-1) which are much above the ones typically observed for single Cu or Fe Oxides and hydroxides. These values highlight a synergistic behaviour resulting from the combination of Cu and Fe in the form of nanostructured metallic foams. Moreover, the capacitance retention observed in an 8000 charge/discharge cycling test was above 66%, stating the good performance of these materials and its enhanced electrochemical response as supercapacitor negative electrodes. (C) 2014 Elsevier B.V. All rights reserved.