5 resultados para CO2 storage and evacuation
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like Sao Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO2 emissions for the transportation and electricity production sectors could be expected.
Resumo:
Portugal joined the effort to create the EPOS infrastructure in 2008, and it became immediately apparent that a national network of Earth Sciences infrastructures was required to participate in the initiative. At that time, FCT was promoting the creation of a national infrastructure called RNG - Rede Nacional de Geofísica (National Geophysics Network). A memorandum of understanding had been agreed upon, and it seemed therefore straightforward to use RNG (enlarged to include relevant participants that were not RNG members) as the Portuguese partner to EPOS-PP. However, at the time of signature of the EPOS-PP contract with the European Commission (November 2010), RNG had not gained formal identity yet, and IST (one of the participants) signed the grant agreement on behalf of the Portuguese consortium. During 2011 no progress was made towards the formal creation of RNG, and the composition of the network – based on proposals submitted to a call issued in 2002 – had by then become obsolete. On February 2012, the EPOS national contact point was mandated by the representatives of the participating national infrastructures to request from FCT the recognition of a new consortium - C3G, Collaboratory for Geology, Geodesy and Geophysics - as the Portuguese partner to EPOS-PP. This request was supported by formal letters from the following institutions: ‐ LNEG. Laboratório Nacional de Energia e Geologia (National Geological Survey); ‐ IGP ‐ Instituto Geográfico Português (National Geographic Institute); ‐ IDL, Instituto Dom Luiz – Laboratório Associado ‐ CGE, Centro de Geofísica de Évora; ‐ FCTUC, Faculdade de Ciências e Tecnologia da Universidade de Coimbra; ‐ Instituto Superior de Engenharia de Lisboa; ‐ Instituto Superior Técnico; ‐ Universidade da Beira Interior. While Instituto de Meteorologia (Meteorological Institute, in charge of the national seismographic network) actively supports the national participation in EPOS, a letter of support was not feasible in view of the organic changes underway at the time. C3G aims at the integration and coordination, at national level, of existing Earth Sciences infrastructures, namely: ‐ seismic and geodetic networks (IM, IST, IDL, CGE); ‐ rock physics laboratories (ISEL); ‐ geophysical laboratories dedicated to natural resources and environmental studies; ‐ geological and geophysical data repositories; ‐ facilities for data storage and computing resources. The C3G - Collaboratory for Geology, Geodesy and Geophysics will be coordinated by Universidade da Beira Interior, whose Department of Informatics will host the C3G infrastructure.
Resumo:
Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. This research is concerned with studying the potential impacts on the electric utilities of large-scale adoption of plug-in electric vehicles from the perspective of electricity demand, fossil fuels use, CO2 emissions and energy costs. Simulations were applied to the Portuguese case study in order to analyze what would be the optimal recharge profile and EV penetration in an energy-oriented, an emissions-oriented and a cost-oriented objective. The objectives considered were: The leveling of load profiles, minimization of daily emissions and minimization of daily wholesale costs. Almost all solutions point to an off-peak recharge and a 50% reduction in daily wholesale costs can be verified from a peak recharge scenario to an off-peak recharge for a 2 million EVs in 2020. A 15% improvement in the daily total wholesale costs can be verified in the costs minimization objective when compared with the off-peak scenario result.
Resumo:
The integration of large amounts of wind energy in power systems raises important operation issues such as the balance between power demand and generation. The pumped storage hydro (PSH) units are seen as one solution for this issue, avoiding the need for wind power curtailments. However, the behavior of a PSH unit might differ considerably when it operates in a liberalized market with some degree of market power. In this regard, a new approach for the optimal daily scheduling of a PSH unit in the day-ahead electricity market was developed and presented in this paper, in which the market power is modeled by a residual inverse demand function with a variable elasticity. The results obtained show that increasing degrees of market power of the PSH unit correspond to decreasing levels of storage and, therefore, the capacity to integrate wind power is considerably reduced under these circumstances.
Resumo:
The integration of Plug-in electric vehicles in the transportation sector has a great potential to reduce oil dependency, the GHG emissions and to contribute for the integration of renewable sources into the electricity generation mix. Portugal has a high share of wind energy, and curtailment may occur, especially during the off-peak hours with high levels of hydro generation. In this context, the electric vehicles, seen as a distributed storage system, can help to reduce the potential wind curtailments and, therefore, increase the integration of wind power into the power system. In order to assess the energy and environmental benefits of this integration, a methodology based on a unit commitment and economic dispatch is adapted and implemented. From this methodology, the thermal generation costs, the CO2 emissions and the potential wind generation curtailment are computed. Simulation results show that a 10% penetration of electric vehicles in the Portuguese fleet would increase electrical load by 3% and reduce wind curtailment by only 26%. This results from the fact that the additional generation required to supply the electric vehicles is mostly thermal. The computed CO2 emissions of the EV are 92 g CO2/kWh which become closer to those of some new ICE engines.