7 resultados para CH4 emissions from soil

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric aerosols of four aerodynamic size ranges were collected using high volume cascade impactors in an extremely busy roadway tunnel in Lisbon (Portugal). Dust deposited on the tunnel walls and guardrails was also collected. Average particle mass concentrations in the tunnel atmosphere were more than 30 times higher than in the outside urban background air, revealing its origins almost exclusively from fresh vehicle emissions. Most of the aerosol mass was concentrated in submicrometer fractions (65%), and polycyclic aromatic hydrocarbons (PAH) were even more concentrated in the finer particles with an average of 84% of total PAH present in sizes smaller than 0.49 mu m. The most abundant PAH were methylated phenanthrenes, fluoranthene and pyrene. About 46% of the total PAH mass was attributed to lower molecular weight compounds (two and three rings), suggesting a strong influence of diesel vehicle emissions on the production of local particulate PAH. The application of diagnostic ratios confirmed the relevance of this source of PAH in the tunnel ambient air. Deposited dust presented PAH profiles similar to the coarser aerosol size range, in agreement with the predominant origin of coarser aerosol particles from soil dust resuspension and vehicle wear products. (c) 201 1 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples–Triticum aestivum L. (Jordão/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93–117 and 26,400–31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4–30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordão presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordão and Marialva cultivars accumulated not statistically significant different concentrations of different metals. The advantages of using INAA are the multielementality, low detection limits and use of solid samples (no need of digestion).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some previous studies have suggested that some of the volatile organic compounds (VOCs) found in composting plants may have a toxic effect that can influence, besides surroundings populations, workers from the composting plants. Impact of waste management to the environment and workers is already recognised as an environment and occupational health concerns. Several studies regarding the VOCs and bioaerosols emissions from composting have been conducted all over Europe and also in Asia. However, in Portugal the studies developed are scarce and normally VOCs are not studied and recognized as a risk factor present in this occupational setting. Consudering this, a study was developed in a Portuguese composting plant aiming to clarify if there was VOCs presence in the workplaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide formaldehyde is manipulated with diverse usage properties, since industrial purposes to health laboratory objectives, representing the economic importance of this chemical agent. Therefore, many people are exposed to formaldehyde environmentally and/or occupationally. Considering the latter, there was recommended occupational exposure limits based on threshold mechanisms, limit values and indoor guidelines. Formaldehyde is classified by the International Agency for Cancer Research (IARC) as carcinogenic to humans (group 1), since a wide range of epidemiological studies in occupational exposure settings have suggested possible links between the concentration and duration of exposure and elevated risks of nasopharyngeal cancer, and others cancers, and more recently, with leukemia. Although there are different classifications, such as U.S. EPA that classified formaldehyde as a B1 compound, probable human carcinogen under the conditions of unusually high or prolonged exposure, on basis of limited evidence in humans but with sufficient evidence in animals. Formaldehyde genotoxicity is well-known, being a direct-acting genotoxic compound positively associated for almost all genetic endpoints evaluated in bacteria, yeast, fungi, plants, insects, nematodes, and cultured mammalian cells. There are many human biomonitoring studies that associate formaldehyde occupational exposure to genomic instability, and consequently possible health effects. Besides the link with cancer, also other pathologies and symptoms are associated with formaldehyde exposure, namely respiratory disorders such as asthma, and allergic contact dermatitis. Nowadays, there are efforts to reduce formaldehyde exposure, namely indoor. Europe and United States developed more strict regulation regarding formaldehyde emissions from materials containing this agent. Despite the regulations and restrictions, formaldehyde still continues to be difficult to eliminate or substitute, being biomonitoring an important tool to control possible future health effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.