5 resultados para CFU

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feed can easily be contaminated and colonized by fungi that use up the nutrients for their own metabolism and growth, producing secondary metabolites such as mycotoxins that are not eliminated throughout the feed processing. The major problems associated with mycotoxin contaminated animal feed are metabolic disturbances resulting in poor animal productivity. In addition, handling contaminated animal feed can also raise health issues regarding workers exposure to fungi and mycotoxins. The scope of this work was to characterize fungal distribution in 11 poultry feed samples. Twenty grams of feed were suspended in 180 mL of distilled water and homogenized during 20 minutes at 200 rpm. The washed supernatant was plated in malt extract agar (MEA) and dichloran glycerol agar base (DG18) media for morphological identification of the mycobiota present. Using macro- and microscopic analysis of the colonies, fungal contamination was evident in 72.7% of the analyzed poultry feed samples. Fungal load ranged from 0 to 13140 CFU/g, and the most prevalent species/genera were F. graminearum complex (71.1%), Penicillium sp. (11.6%), Cladosporium sp. (8.8%), and Fusarium poae (3.6%). In addition to these species, we also isolated Aspergillus sections Circumdati, Nigri and Aspergilli, and Mucor and Rhizopus genus albeit at a lower abundance. The data obtained showed that, besides high fungal contamination, mycotoxins contamination is probably a reality, particularly in the final product since mycotoxins resist to all the processing operations including thermal treatment. Additionally, data claimed attention for the probable co-exposure to fungi and mycotoxins of the workers in feed industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of microorganisms in ophthalmic instruments and surfaces can lead to the exposure of patients to several infections. However, there is no information regarding fungal and bacteria contamination in optical shops. This study aims to characterize fungi and bacteria contamination in air and surfaces from 10 optical shops covering also ophthalmic instruments. Air samples were collected through an impaction method onto malt extract agar (MEA) supplemented with chloramphenicol (0.05%) used for fungi and Tryptic Soy Agar (TSA) supplemented with nystatin (0.2%) used for bacteria. Outdoor samples were also performed to be used as reference. Surface and equipment’s swab samples were also collected side-by-side. All the collected samples were incubated at 27ºC for 5 to 7 days (fungi) or at 30º for 7 days (bacteria). Regarding fungal distribution, thirteen different species/genera were found in the air, being the most common Alternaria sp. (62.0%). Eight different species/genera were identified in the surfaces, ranging from 2 to 5x104 CFU/m2, being the most common A. versicolor complex and Penicillium sp. (40.0%). The trial frames were the most contaminated equipment, since 50.0% of the collected samples were with countless colonies. The airborne bacterial population indicated higher concentrations in the contactology office (average: 133 CFU/m3) than in the client’s waiting rooms (average: 126 CFU/m3). The surface samples indicated bacterial concentrations ranging from 2x104 to 1x106 CFU/m2, pointing out the automatic refractometer as the surface with higher bacterial load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Em arquivos e bibliotecas a presença de fungos é considerada nefasta pelas suas implicações na conservação e leitura de documentos históricos e pela sua associação a problemas de saúde sentidos pelos funcionários e utentes que frequentam estes locais. De acordo com alguns autores, os problemas de saúde mais reportados por funcionários em Bibliotecas e Arquivos são dermatite, rinite, alergias e asma. Embora revestida de inegável importância, existem poucos estudos internacionais sobre a temática e, em Portugal, a contaminação fúngica em ambiente arquivístico e em bibliotecas é ainda muito pouco conhecida. O estudo realizado em quatro Arquivos Portugueses teve como objectivo conhecer a contaminação fúngica, contribuindo para a análise da qualidade do ar interior desses espaços e sua comparação com estudos internacionais. Para isso foram recolhidas amostras de ar e de superfícies e estas foram analisadas por métodos clássicos de cultura e, quando necessário, por métodos de biologia molecular. A avaliação foi feita quantitativa e qualitativamente, considerando os requisitos legais em vigor. No que respeita à análise do ar, o número de unidades formadoras de colónias (UFC)/m3 nunca excedeu as 500 (limite legislado), tendo sido verificada contaminação interior em todos os locais estudados. Comparativamente aos estudos realizados anteriormente em contextos semelhantes foram encontrados níveis elevados de contaminação por leveduras nas amostras de ar analisadas em Arquivos Portugueses. Não foi identificado nenhum fungo patogénico neste estudo, mas em quase todas as amostras estavam presentes fungos potencialmente toxinogénicos. Dentro do grupo dos Aspergillus, o A.versicolor mostrou predominância, tendo este fungo reconhecidas capacidades de emissão de micotoxinas em ambiente de interior. A inclusão de amostras de superfície revelou-se vital para conhecer todo o espectro fúngico existente em cada um dos locais estudados, incluindo a detecção de Stachybotrys chartarum e a do fungo potencialmente queratinofílico, Chrysosporium carmichaelli. Tanto para a saúde como para a conservação, o recente estudo realizado em quatro arquivos permitiu retirar importantes conclusões e reforçar a necessidade de vigilância, sendo também útil para a definição de padrões de qualidade no campo do património cultural.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poor hospital indoor air quality (IAQ) may lead to hospital-acquired infections, sick hospital syndrome and various occupational hazards. Air-control measures are crucial for reducing dissemination of airborne biological particles in hospitals. The objective of this study was to perform a survey of bioaerosol quality in different sites in a Portuguese Hospital, namely the operating theater (OT), the emergency service (ES) and the surgical ward (SW). Aerobic mesophilic bacterial counts (BCs) and fungal load (FL) were assessed by impaction directly onto tryptic soy agar and malt extract agar supplemented with antibiotic chloramphenicol (0.05%) plates, respectively using a MAS-100 air sampler. The ES revealed the highest airborne microbial concentrations (BC range 240-736 CFU/m(3) CFU/m(3); FL range 27-933 CFU/m(3)), exceeding, at several sampling sites, conformity criteria defined in national legislation [6]. Bacterial concentrations in the SW (BC range 99-495 CFU/m(3)) and the OT (BC range 12-170 CFU/m(3)) were under recommended criteria. While fungal levels were below 1 CFU/m(3) in the OT, in the SW (range 1-32 CFU/m(3)), there existed a site with fungal indoor concentrations higher than those detected outdoors. Airborne Gram-positive cocci were the most frequent phenotype (88%) detected from the measured bacterial population in all indoor environments. Staphylococcus (51%) and Micrococcus (37%) were dominant among the bacterial genera identified in the present study. Concerning indoor fungal characterization, the prevalent genera were Penicillium (41%) and Aspergillus (24%). Regular monitoring is essential for assessing air control efficiency and for detecting irregular introduction of airborne particles via clothing of visitors and medical staff or carriage by personal and medical materials. Furthermore, microbiological survey data should be used to clearly define specific air quality guidelines for controlled environments in hospital settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Health effects resulting from dust inhalation in occupational environments may be more strongly associated with specific microbial components, such as fungi, than to the particles. The aim of the present study is to characterize the occupational exposure to the fungal burden in four different occupational settings (two feed industries, one poultry and one waste sorting industry), presenting results from two air sampling methods – the impinger collector and the use of filters. In addition, the equipment used for the filter sampling method allowed a more accurate characterization regarding the dimension of the collected fungal particles (less than 2.5 μm size). Air samples of 300L were collected using the impinger Coriolis μ air sampler. Simultaneously, the aerosol monitor (DustTrak II model 8532, TSI®) allowed assessing viable microbiological material below the 2.5 μm size. After sampling, filters were immersed in 300 mL of sterilized distilled water and agitated for 30 min at 100 rpm. 150 μl from the sterilized distilled water were subsequently spread onto malt extract agar (2%) with chloramphenicol (0.05 g/L). All plates were incubated at 27.5 ºC during 5–7 days. With the impinger method, the fungal load ranged from 0 to 413 CFU.m-3 and with the filter method, ranged from 0 to 64 CFU.m-3. In one feed industry, Penicillium genus was the most frequently found genus (66.7%) using the impinger method and three more fungi species/genera/complex were found. The filter assay allowed the detection of only two species/genera/complex in the same industry. In the other feed industry, Cladosporium sp. was the most found (33.3%) with impinger method and three more species/genera/complex were also found. Through the filter assay four fungi species/genera/complex were found. In the assessed poultry, Rhyzopus sp. was the most frequently detected (61.2%) and more three species/genera/complex were isolated. Through the filter assay, only two fungal species/genera/complex were found. In the waste sorting industry Penicillium sp. was the most prevalent (73.6%) with the impinger method, being isolated two more different fungi species/genera/complex. Through the filter assay only Penicillium sp. was found. A more precise determination of occupational fungal exposure was ensured, since it was possible to obtain information regarding not only the characterization of fungal contamination (impinger method), but also the size of dust particles, and viable fungal particles, that can reach the worker ́s respiratory tract (filters method). Both methods should be used in parallel to enrich discussion regarding potential health effects of occupational exposure to fungi.