3 resultados para CARRIER RELAXATION
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
The rheological and structural characteristics of acetoxypropylcellulose (APC) nematic melt are studied at shear rates ranging from 10 s(-1) to 1000 s(-1) which are relevant to extrusion based processes. APC shows a monotonic shear thinning behavior over the range of shear rates tested. The negative extrudate-swell shows a minimum when a critical shear rate (gamma) over dot(c) is reached. For shear rates smaller than (gamma) over dot(c), the flow-induced texture consists of two set of bands aligned parallel and normal to the flow direction. At shear rates larger than (gamma) over dot(c), the flow induced texture is reminiscent of a 2 fluids structure. Close to the shearing walls, domains elongated along the flow direction and stacked along the vorticity are imaged with POM, whereas SALS patterns indicate that the bulk of the sheared APC is made of elliptical domains oriented along the vorticity. No full nematic alignment is achieved at the largest shear rate tested. Below (gamma) over dot(c), the stress relaxation is described by a stretched exponential. Above (gamma) over dot(c), the stress relaxation is described by a fast and a slow process. The latter coincides with the growth of normal bands thicknesses, as the APC texture after flow cessation consists of two types of bands with parallel and normal orientations relative to the flow direction. Both bands thicknesses do not depend on the applied shear rate, in contrast to their orientation. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The integrated numerical tool SWAMS (Simulation of Wave Action on Moored Ships) is used to simulate the behavior of a moored container carrier inside Sines’ Harbour. Wave, wind, currents, floating ship and moorings interaction is discussed. Several case scenarios are compared differing in the layout of the harbour and wind and wave conditions. The several harbour layouts correspond to proposed alternatives for the future expansion of Sines’ terminal XXI that include the extension of the East breakwater and of the quay. Additionally, the influence of wind on the behavior of the ship moored and the introduction of pre tensioning the mooring lines was analyzed. Hydrodynamic forces acting on the ship are determined using a modified version of the WAMIT model. This modified model utilizes the Haskind relations and the non-linear wave field inside the harbour obtained with finite element numerical model, BOUSS-WMH (Boussinesq Wave Model for Harbors) to get the wave forces on the ship. The time series of the moored ship motions and forces on moorings are obtained using BAS solver. © 2015 Taylor & Francis Group, London.