3 resultados para C6.9 Glioma-cells

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcrystalline silicon is a two-phase material. Its composition can be interpreted as a series of grains of crystalline silicon imbedded in an amorphous silicon tissue, with a high concentration of dangling bonds in the transition regions. In this paper, results for the transport properties of a mu c-Si:H p-i-n junction obtained by means of two-dimensional numerical simulation are reported. The role played by the boundary regions between the crystalline grains and the amorphous matrix is taken into account and these regions are treated similar to a heterojunction interface. The device is analysed under AM1.5 illumination and the paper outlines the influence of the local electric field at the grain boundary transition regions on the internal electric configuration of the device and on the transport mechanism within the mu c-Si:H intrinsic layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as the ‘Von Magnus effect’. Interference by DI viruses has been proposed to underlie these dynamics, although experimental tests of this idea have not been forthcoming. For the baculoviruses, insect viruses commonly used for the expression of heterologous proteins in insect cells, the molecular mechanisms underlying DI generation have been investigated. However, the dynamics of baculovirus populations harboring DIs have not been studied in detail. In order to address this issue, we used quantitative real-time PCR to determine the levels of helper and DI viruses during 50 serial passages of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Sf21 cells. Unexpectedly, the helper and DI viruses changed levels largely in phase, and oscillations were highly irregular, suggesting the presence of chaos. We therefore developed a simple mathematical model of baculovirus-DI dynamics. This theoretical model reproduced patterns qualitatively similar to the experimental data. Although we cannot exclude that experimental variation (noise) plays an important role in generating the observed patterns, the presence of chaos in the model dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI viruses, using mutation as a control parameter. Our results contribute to a better understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels over passages may exhibit chaos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present the explicit series solution of a specific mathematical model from the literature, the Deng bursting model, that mimics the glucose-induced electrical activity of pancreatic beta-cells (Deng, 1993). To serve to this purpose, we use a technique developed to find analytic approximate solutions for strongly nonlinear problems. This analytical algorithm involves an auxiliary parameter which provides us with an efficient way to ensure the rapid and accurate convergence to the exact solution of the bursting model. By using the homotopy solution, we investigate the dynamical effect of a biologically meaningful bifurcation parameter rho, which increases with the glucose concentration. Our analytical results are found to be in excellent agreement with the numerical ones. This work provides an illustration of how our understanding of biophysically motivated models can be directly enhanced by the application of a newly analytic method.