5 resultados para Bose-Einstein condensation statistical model

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a model consisting of particles with dissimilar bonding sites ("patches"), which exhibits self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both simulations and theory. We show that, as the energy cost epsilon(j) of forming Y-junctions increases, the extent of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase diagram thus acquires a characteristic "pinched" shape in which the liquid branch density decreases as the temperature is lowered. To our knowledge, this is the first model in which the predicted topological phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is actually observed. Above a certain threshold for epsilon(j), condensation ceases to exist because the entropy gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties of these phase diagrams can be understood in terms of a temperature-dependent effective valence of the patchy particles. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605703]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771591]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of the Higgs boson data by the ATLAS and CMS Collaborations appears to exhibit an excess of h -> gamma gamma events above the Standard Model (SM) expectations, whereas no significant excess is observed in h -> ZZ* -> four lepton events, albeit with large statistical uncertainty due to the small data sample. These results (assuming they persist with further data) could be explained by a pair of nearly mass-degenerate scalars, one of which is an SM-like Higgs boson and the other is a scalar with suppressed couplings to W+W- and ZZ. In the two-Higgs-doublet model, the observed gamma gamma and ZZ* -> four lepton data can be reproduced by an approximately degenerate CP-even (h) and CP-odd (A) Higgs boson for values of sin (beta - alpha) near unity and 0: 70 less than or similar to tan beta less than or similar to 1. An enhanced gamma gamma signal can also arise in cases where m(h) similar or equal to m(H), m(H) similar or equal to m(A), or m(h) similar or equal to m(H) similar or equal to m(A). Since the ZZ* -> 4 leptons signal derives primarily from an SM-like Higgs boson whereas the gamma gamma signal receives contributions from two (or more) nearly mass-degenerate states, one would expect a slightly different invariant mass peak in the ZZ* -> four lepton and gamma gamma channels. The phenomenological consequences of such models can be tested with additional Higgs data that will be collected at the LHC in the near future. DOI: 10.1103/PhysRevD.87.055009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here.