10 resultados para Borne Viruses
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Introduction - Microscopic filamentous fungi, under suitable environmental conditions, can lead to the production of highly toxic chemical substances, commonly known as mycotoxins. The most widespread and studied mycotoxins are metabolites of some genera of moulds such as Aspergillus, Penicillium and Fusarium. Quite peculiar conditions may influence mycotoxin biosynthesis, such as climate, geographical location, cultivation practices, storage and type of substrate. Toxicity has been extensively investigated for the most important mycotoxins, such as aflatoxins, ochratoxin A and Fusarium toxins, and much information derived from toxicokinetics in animal models has also been obtained. The adverse effects are mainly related to genotoxicity, carcinogenicity, mutagenicity, teratogenicity and immunotoxicity. Aim of the study - To identify fungal species able to produce important mycotoxins in different Portuguese settings.
Resumo:
One of the major problems that prevents the spread of elections with the possibility of remote voting over electronic networks, also called Internet Voting, is the use of unreliable client platforms, such as the voter's computer and the Internet infrastructure connecting it to the election server. A computer connected to the Internet is exposed to viruses, worms, Trojans, spyware, malware and other threats that can compromise the election's integrity. For instance, it is possible to write a virus that changes the voter's vote to a predetermined vote on election's day. Another possible attack is the creation of a fake election web site where the voter uses a malicious vote program on the web site that manipulates the voter's vote (phishing/pharming attack). Such attacks may not disturb the election protocol, therefore can remain undetected in the eyes of the election auditors. We propose the use of Code Voting to overcome insecurity of the client platform. Code Voting consists in creating a secure communication channel to communicate the voter's vote between the voter and a trusted component attached to the voter's computer. Consequently, no one controlling the voter's computer can change the his/her's vote. The trusted component can then process the vote according to a cryptographic voting protocol to enable cryptographic verification at the server's side.
Resumo:
A utilização de travessas de madeira de Pinho bravo (Pinus pinaster Ait.) no Caminho de Ferro continua a ter uma expressão significativa em Portugal, nomeadamente para instalação em pontes metálicas, em túneis existentes e objecto de electrificação (compatibilização do gabarit de electrificação com a rasante), em aparelhos de mudança de via, na substituição de elementos danificados em linhas existentes e equipadas com este tipo de travessas, etc. Os custos de produção dessas travessas associadas a uma crescente falta ou baixa de qualidade da matéria-prima, conduzem à necessidade de se equacionarem soluções alternativas. Assim, e no intuito de procurar novas soluções com caraterísticas de desempenho no mínimo idênticas e porventura mais interessantes em termos económicos e ambientais, importa conduzir uma análise comparativa da solução tradicional (madeira maciça) com uma solução baseada nos produtos técnicos da madeira (lamelados colados, placa microlamelada colada ou outros). Desta forma o estudo proposto, desenvolvido em colaboração com o Laboratório Nacional de Engenharia Civil (LNEC) – Núcleo de Estruturas de Madeira, pretendeu avaliar o comportamento dos lamelados colados quando sujeitos a um tratamento industrial com creosote, em escala industrial, e o efeito do tratamento com creosote na qualidade da colagem (a curto e a médio prazo). O estudo engloba ainda uma análise simplificada de custos de produção, com o objectivo de permitir avaliar da viabilidade económica da solução apontada. O estudo compreendeu várias soluções de lamelados colados destinados a aplicações em condições exteriores. As soluções diferenciaram-se quanto às espécies de madeira empregues e ao tipo de cola utilizada no seu fabrico. Os resultados obtidos permitem concluir da viabilidade técnica da utilização de lamelado colado, sendo no entanto crucial um controlo apertado da qualidade de fabrico (colagem) e da disposição das lamelas de forma a prevenir a existência de zonas de borne de difícil acesso ao produto, afectando a qualidade do tratamento. No entanto, do ponto de vista de custos a solução com madeira lamelada colada apresenta-se significativamente mais cara.
Ventilation influence in occupational exposure to fungi and volatile organic compounds: poultry case
Resumo:
Introduction - In poultry houses, large-scale production has led to increased bird densities within buildings. Such high densities of animals kept within confined spaces are a source of human health problems related to occupational organic dust exposure. This organic dust is composed of both non-viable particles and viable particulate matter (also called bioaerosols). Bioaerosols are comprised by airborne bacteria, fungi, viruses and their by-products, endotoxins and mycotoxins. Exposure to fungi in broiler houses may vary depending upon the applied ventilation system. Ventilation can be an important resource in order to reduce air contamination in these type of settings. Nevertheless, some concerns regarding costs, sensitivity of the animal species to temperature differences, and also the type of building used define which type of ventilation is used. Aim of the study - A descriptive study was developed in one poultry unit aiming to assess occupational fungal and volatile organic compounds (VOCs) exposure.
Resumo:
Dust is a complex mixture of particles of organic and inorganic origin and different gases absorbed in aerosol droplets. In a poultry unit include dried faecal matter and urine, skin flakes, ammonia, carbon dioxide, pollens, feed and litter particles, feathers, grain mites, fungi spores, bacteria, viruses and their constituents. Dust particles vary in size and differentiation between particle size fractions is important in health studies in order to quantify penetration within the respiratory system. A descriptive study was developed in order to assess exposure to particles in a poultry unit during different operations, namely routine examination and floor turn over. Direct-reading equipment was used (Lighthouse, model 3016 IAQ). Particle measurement was performed in 5 different sizes (PM0.5; PM1.0; PM2.5; PM5.0; PM10). The chemical composition of poultry litter was also determined by neutron activation analysis. Normally, the litter of poultry pavilions is turned over weekly and it was during this operation that the higher exposure of particles was observed. In all the tasks considered PM5.0 and PM10.0 were the sizes with higher concentrations values. PM10 is what turns out to have higher values and PM0.5 the lowest values. The chemical element with the highest concentration was Mg (5.7E6 mg.kg-1), followed by K (1.5E4 mg.kg-1), Ca (4.8E3 mg.kg-1), Na (1.7E3 mg.kg-1), Fe (2.1E2 mg.kg-1) and Zn (4.2E1 mg.kg-1). This high presence of particles in the respirable range (<5–7μm) means that poultry dust particles can penetrate into the gas exchange region of the lung. Larger particles (PM10) present a range of concentrations from 5.3E5 and 3.0E6 mg/m3.
Resumo:
Beaches worldwide provide recreational opportunities to hundreds of millions of people and serve as important components of coastal economies. Beach water is often monitored for microbiological quality to detect the presence of indicators of human sewage contamination so as to prevent public health outbreaks associated with water contact. However, growing evidence suggests that beach sand can harbor microbes harmful to human health, often in concentrations greater than the beach water. Currently, there are no standards for monitoring, sampling, analyzing, or managing beach sand quality. In addition to indicator microbes, growing evidence has identified pathogenic bacteria, viruses, and fungi in a variety of beach sands worldwide. The public health threat associated with these populations through direct and indirect contact is unknown because so little research has been conducted relating to health outcomes associated with sand quality. In this manuscript, we present the consensus findings of a workshop of experts convened in Lisbon, Portugal to discuss the current state of knowledge on beach sand microbiological quality and to develop suggestions for standardizing the evaluation of sand at coastal beaches. The expert group at the "Microareias 2012" workshop recommends that 1) beach sand should be screened for a variety of pathogens harmful to human health, and sand monitoring should then be initiated alongside regular water monitoring; 2) sampling and analysis protocols should be standardized to allow proper comparisons among beach locations; and 3) further studies are needed to estimate human health risk with exposure to contaminated beach sand. Much of the manuscript is focused on research specific to Portugal, but similar results have been found elsewhere, and the findings have worldwide implications.
Resumo:
The handling of waste and compost that occurs frequently in composting plants (compost turning, shredding, and screening) has been shown to be responsible for the release of dust and air borne microorganisms and their compounds in the air. Thermophilic fungi, such as A. fumigatus, have been reported and this kind of contamination in composting facilities has been associated with increased respiratory symptoms among compost workers. This study intended to characterize fungal contamination in a totally indoor composting plant located in Portugal. Besides conventional methods, molecular biology was also applied to overcome eventual limitations.
Resumo:
Mestrado em Fiscalidade
Resumo:
Selenium functions as a co-factor for the reduction of antioxidant enzymes and is an important component of antioxidant enzymes. Dietary selenium significantly inhibits the induction of skin, liver, colon, and mammary tumours in experimental animals by a number of different carcinogens, as well as the induction of mammary tumours by viruses. Selenium shows a “U” shaped curve for functionality, whereby too little is as damaging as too much. At optimal levels, selenium may protect against the formation of DNA adducts, DNA or chromosome breakage, chromosome gain or loss, mitochondrial DNA, and telomere length and function. Aim of study: Investigate the relation between selenium and genotoxic effects in a human biomonitoring study applied to occupational health.
Resumo:
The market for emulsion polymers (latexes) is large and growing at the expense of other manufacturing processes that emit higher amounts of volatile organic solvents. The paint industry is not an exception and solvent-borne paints have been gradually substituted by aqueous paints. In their life-cycle, much of the aqueous paint used for architectural or decorative purposes will eventually be discharged into wastewater treatment facilities, where its polymeric nanoparticles (mainly acrylic and styrene-acrylic) can work as xenobiotics to the microbial communities present in activated sludge. It is well established that these materials are biocompatible at macroscopic scale. But is their behaviour the same at nanoscale? What happens to the polymeric nanoparticles during the activated sludge process? Do nanoparticles agregate and are discharged together with the sludge or remain in emulsion? How do microorganisms interact with these nanoparticles? Are nanoparticles degradated by them? Are they adsorbed? Are these nanoparticles toxic to the microbial community? To study the influence of these xenobiotics in the activated sludge process, an emulsion of cross-linked poly(butyl methacrylate) nanoparticles of ca. 50 nm diameter was produced and used as model compound. Activated sludge from a wastewater treatment plant was tested by the OCDE’s respiration inhibition test using several concentrations of PBMA nanoparticles. Particle aggregation was followed by Dynamic Light Scattering and microorganism surfaces were observed by Atomic Force Microscopy. Using sequential batch reactors (SBRs) and continuous reactors, both inoculated with activated sludge, the consumption of carbon, ammonia, nitrite and nitrate was monitored and compared, in the presence and absence of nanoparticles. No particles were detected in all treated waters by Dynamic Light Scattering. This can either mean that microorganisms can efficiently remove all polymer nanoparticles or that nanoparticles tend to aggregate and be naturally removed by precipitation. Nevertheless respiration inhibition tests demonstrated that microorganisms consume more oxygen in the presence of nanoparticles, which suggests a stress situation. It was also observed a slight decrease in the efficiency of nitrification in the presence of nanoparticles. AFM images showed that while the morphology of some organisms remained the same both in the presence and absence of nanoparticles, others assumed a rough surface with hilly like shapes of ca. 50 nm when exposed to nanoparticles. Nanoparticles are thus likely to be either incorporated or adsorbed at the surface of some organisms, increasing the overall respiration rate and decreasing nitrification efficiency. Thus, despite its biocompatibility at macroscopic scale, PBMA is likely to be no longer innocuous at nanoscale.