3 resultados para Booth-Wallace constant multipliers

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this brief, a read-only-memoryless structure for binary-to-residue number system (RNS) conversion modulo {2(n) +/- k} is proposed. This structure is based only on adders and constant multipliers. This brief is motivated by the existing {2(n) +/- k} binary-to-RNS converters, which are particular inefficient for larger values of n. The experimental results obtained for 4n and 8n bits of dynamic range suggest that the proposed conversion structures are able to significantly improve the forward conversion efficiency, with an AT metric improvement above 100%, regarding the related state of the art. Delay improvements of 2.17 times with only 5% area increase can be achieved if a proper selection of the {2(n) +/- k} moduli is performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Schwinger proper-time method is an effective calculation method, explicitly gauge-invariant and nonperturbative. We make use of this method to investigate the radiatively induced Lorentz- and CPT-violating effects in quantum electrodynamics when an axial-vector interaction term is introduced in the fermionic sector. The induced Lorentz- and CPT-violating Chern-Simons term coincides with the one obtained using a covariant derivative expansion but differs from the result usually obtained in other regularization schemes. A possible ambiguity in the approach is also discussed. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.