38 resultados para Bifurcation Diagrams

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper concerns dynamics and bifurcations properties of a class of continuous-defined one-dimensional maps, in a three-dimensional parameter space: Blumberg's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon, associated with the stability of a fixed point. A central point of our investigation is the study of bifurcations structure for this class of functions. We verified that under some sufficient conditions, Blumberg's functions have a particular bifurcations structure: the big bang bifurcations of the so-called "box-within-a-box" type, but for different kinds of boxes. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct attractors. This work contributes to clarify the big bang bifurcation analysis for continuous maps. To support our results, we present fold and flip bifurcations curves and surfaces, and numerical simulations of several bifurcation diagrams.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Population dynamics have been attracting interest since many years. Among the considered models, the Richards’ equations remain one of the most popular to describe biological growth processes. On the other hand, Allee effect is currently a major focus of ecological research, which occurs when positive density dependence dominates at low densities. In this chapter, we propose the dynamical study of classes of functions based on Richards’ models describing the existence or not of Allee effect. We investigate bifurcation structures in generalized Richards’ functions and we look for the conditions in the (β, r) parameter plane for the existence of a weak Allee effect region. We show that the existence of this region is related with the existence of a dovetail structure. When the Allee limit varies, the weak Allee effect region disappears when the dovetail structure also disappears. Consequently, we deduce the transition from the weak Allee effect to no Allee effect to this family of functions. To support our analysis, we present fold and flip bifurcation curves and numerical simulations of several bifurcation diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use Wertheim's first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f(B) patches of type B). A patch of type alpha = {A, B} can bond to a patch of type beta = {A, B} in a volume nu(alpha beta), thereby decreasing the internal energy by epsilon(alpha beta). We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (epsilon(AB) < epsilon(AA)/2) but entropically favoured (nu(AB) >> nu(alpha alpha)), and BB bonds, or X-junctions, are energetically favoured (epsilon(BB) > 0). We show that, for low values of epsilon(BB)/epsilon(AA), the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X-and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of epsilon(BB)/epsilon(AA). The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of distinct bonding energies on the onset of criticality of low functionality fluid mixtures. We focus on mixtures ofparticles with two and three patches as this includes the mixture where "empty" fluids were originally reported. In addition to the number of patches, thespecies differ in the type of patches or bonding sites. For simplicity, we consider that the patches on each species are identical: one species has threepatches of type A and the other has two patches of type B. We have found a rich phase behavior with closed miscibility gaps, liquid-liquid demixing, and negative azeotropes. Liquid-liquid demixing was found to pre-empt the "empty" fluid regime, of these mixtures, when the AB bonds are weaker than the AA or BB bonds. By contrast, mixtures in this class exhibit "empty" fluid behavior when the AB bonds are stronger than at least one of the other two. Mixtureswith bonding energies epsilon(BB) = epsilon(AB) and epsilon(AA) < epsilon(BB), were found to exhibit an unusual negative azeotrope. (C) 2011 American Institute of Physics. [doi:10.1063/1.3561396]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In team sports, the spatial distribution of players on the field is determined by the interaction behavior established at both player and team levels. The distribution patterns observed during a game emerge from specific technical and tactical methods adopted by the teams, and from individual, environmental and task constraints that influence players' behaviour. By understanding how specific patterns of spatial interaction are formed, one can characterize the behavior of the respective teams and players. Thus, in the present work we suggest a novel spatial method for describing teams' spatial interaction behaviour, which results from superimposing the Voronoi diagrams of two competing teams. We considered theoretical patterns of spatial distribution in a well-defined scenario (5 vs 4+ GK played in a field of 20x20m) in order to generate reference values of the variables derived from the superimposed Voronoi diagrams (SVD). These variables were tested in a formal application to empirical data collected from 19 Futsal trials with identical playing settings. Results suggest that it is possible to identify a number of characteristics that can be used to describe players' spatial behavior at different levels, namely the defensive methods adopted by the players.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Team sports represent complex systems: players interact continuously during a game, and exhibit intricate patterns of interaction, which can be identified and investigated at both individual and collective levels. We used Voronoi diagrams to identify and investigate the spatial dynamics of players' behavior in Futsal. Using this tool, we examined 19 plays of a sub-phase of a Futsal game played in a reduced area (20 m(2)) from which we extracted the trajectories of all players. Results obtained from a comparative analysis of player's Voronoi area (dominant region) and nearest teammate distance revealed different patterns of interaction between attackers and defenders, both at the level of individual players and teams. We found that, compared to defenders, larger dominant regions were associated with attackers. Furthermore, these regions were more variable in size among players from the same team but, at the player level, the attackers' dominant regions were more regular than those associated with each of the defenders. These findings support a formal description of the dynamic spatial interaction of the players, at least during the particular sub-phase of Futsal investigated. The adopted approach may be extended to other team behaviors where the actions taken at any instant in time by each of the involved agents are associated with the space they occupy at that particular time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When performing a full calculation within the standard model (SM) or its extensions, it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge fields. Unfortunately, the literature is plagued with differing signs and notations. We present all SM Feynman rules, including ghosts, in a convention-independent notation, and we table the conventions in close to 40 books and reviews.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincareacute return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing delta(1). However, for higher values of delta(1) the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter zeta) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How does the construction of proof relate to the social practice developed in the mathematics classroom? This report addresses the role of diagrams in order to focus the complementarity of participation and reification in the process of constructing a proof and negotiating its meaning. The discussion is based on the analysis of the mathematical practice developed by a group of four 9th grade students and is inspired by the social theory of learning

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of economic systems has generated deep interest in exploring the complexity of chaotic motions in economy. Due to important developments in nonlinear dynamics, the last two decades have witnessed strong revival of interest in nonlinear endogenous business chaotic models. The inability to predict the behavior of dynamical systems in the presence of chaos suggests the application of chaos control methods, when we are more interested in obtaining regular behavior. In the present article, we study a specific economic model from the literature. More precisely, a system of three ordinary differential equations gather the variables of profits, reinvestments and financial flow of borrowings in the structure of a firm. Firstly, using results of symbolic dynamics, we characterize the topological entropy and the parameter space ordering of kneading sequences, associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The analysis of the variation of this numerical invariant, in some realistic system parameter region, allows us to quantify and to distinguish different chaotic regimes. Finally, we show that complicated behavior arising from the chaotic firm model can be controlled without changing its original properties and the dynamics can be turned into the desired attracting time periodic motion (a stable steady state or into a regular cycle). The orbit stabilization is illustrated by the application of a feedback control technique initially developed by Romeiras et al. [1992]. This work provides another illustration of how our understanding of economic models can be enhanced by the theoretical and numerical investigation of nonlinear dynamical systems modeled by ordinary differential equations.