1 resultado para BIOLOGICALLY RELEVANT
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (5)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (25)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (8)
- Aston University Research Archive (24)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (216)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (65)
- Brock University, Canada (6)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (36)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (10)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (20)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (6)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (3)
- Glasgow Theses Service (1)
- Hospital Prof. Dr. Fernando Fonseca - Portugal (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Institute of Public Health in Ireland, Ireland (4)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (22)
- Nottingham eTheses (2)
- Open Access Repository of Indian Theses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (77)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (25)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (7)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (66)
- Université de Montréal (2)
- Université de Montréal, Canada (12)
- University of Michigan (16)
- University of Queensland eSpace - Australia (93)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Locomotor tasks characterization plays an important role in trying to improve the quality of life of a growing elderly population. This paper focuses on this matter by trying to characterize the locomotion of two population groups with different functional fitness levels (high or low) while executing three different tasks-gait, stair ascent and stair descent. Features were extracted from gait data, and feature selection methods were used in order to get the set of features that allow differentiation between functional fitness level. Unsupervised learning was used to validate the sets obtained and, ultimately, indicated that it is possible to distinguish the two population groups. The sets of best discriminate features for each task are identified and thoroughly analysed. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.