4 resultados para Attitudes, Persuasion, Confidence, Voice, Elaboration Likelihood Model
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Este artigo é uma introdução à teoria do paradigma desconstrutivo de aprendizagem cooperativa. Centenas de estudos provam com evidências o facto de que as estruturas e os processos de aprendizagem cooperativa aumentam o desempenho académico, reforçam as competências de aprendizagem ao longo da vida e desenvolvem competências sociais, pessoais de cada aluno de uma forma mais eficaz e usta, comparativamente às estruturas tradicionais de aprendizagem nas escolas. Enfrentando os desafios dos nossos sistemas educativos, seria interessante elaborar o quadro teórico do discurso da aprendizagem cooperativa, dos últimos 40 anos, a partir de um aspeto prático dentro do contexto teórico e metodológico. Nas últimas décadas, o discurso cooperativo elaborou os elementos práticos e teóricos de estruturas e processos de aprendizagem cooperativa. Gostaríamos de fazer um resumo desses elementos com o objetivo de compreender que tipo de mudanças estruturais podem fazer diferenças reais na prática de ensino e aprendizagem. Os princípios básicos de estruturas cooperativas, os papéis de cooperação e as atitudes cooperativas são os principais elementos que podemos brevemente descrever aqui, de modo a criar um quadro para a compreensão teórica e prática de como podemos sugerir os elementos de aprendizagem cooperativa na nossa prática em sala de aula. Na minha perspetiva, esta complexa teoria da aprendizagem cooperativa pode ser entendida como um paradigma desconstrutivo que fornece algumas respostas pragmáticas para as questões da nossa prática educativa quotidiana, a partir do nível da sala de aula para o nível de sistema educativo, com foco na destruição de estruturas hierárquicas e antidemocráticas de aprendizagem e, criando, ao mesmo tempo, as estruturas cooperativas.
Resumo:
In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.
Resumo:
In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion.