7 resultados para Atomic size contacts
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Atmospheric aerosols of four aerodynamic size ranges were collected using high volume cascade impactors in an extremely busy roadway tunnel in Lisbon (Portugal). Dust deposited on the tunnel walls and guardrails was also collected. Average particle mass concentrations in the tunnel atmosphere were more than 30 times higher than in the outside urban background air, revealing its origins almost exclusively from fresh vehicle emissions. Most of the aerosol mass was concentrated in submicrometer fractions (65%), and polycyclic aromatic hydrocarbons (PAH) were even more concentrated in the finer particles with an average of 84% of total PAH present in sizes smaller than 0.49 mu m. The most abundant PAH were methylated phenanthrenes, fluoranthene and pyrene. About 46% of the total PAH mass was attributed to lower molecular weight compounds (two and three rings), suggesting a strong influence of diesel vehicle emissions on the production of local particulate PAH. The application of diagnostic ratios confirmed the relevance of this source of PAH in the tunnel ambient air. Deposited dust presented PAH profiles similar to the coarser aerosol size range, in agreement with the predominant origin of coarser aerosol particles from soil dust resuspension and vehicle wear products. (c) 201 1 Elsevier Ltd. All rights reserved.
Resumo:
The magnetic and electrical properties of Ni implanted single crystalline TiO2 rutile were studied for nominal implanted fluences between 0.5 x 10(17) cm(-2) and 2.0 x 10(17) cm(-2) with 150 keV energy, corresponding to maximum atomic concentrations between 9 at% and 27 at% at 65 nm depth, in order to study the formation of metallic oriented aggregates. The results indicate that the as implanted crystals exhibit superparamagnetic behavior for the two higher fluences, which is attributed to the formation of nanosized nickel clusters with an average size related with the implanted concentration, while only paramagnetic behavior is observed for the lowest fluence. Annealing at 1073 K induces the aggregation of the implanted nickel and enhances the magnetization in all samples. The associated anisotropic behavior indicates preferred orientations of the nickel aggregates in the rutile lattice consistent with Rutherford backscattering spectrometry-channelling results. Electrical conductivity displays anisotropic behavior but no magnetoresistive effects were detected. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
An atmospheric aerosol study was performed in 2008 inside an urban road tunnel, in Lisbon, Portugal. Using a high volume impactor, the aerosol was collected into four size fractions (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) and analysed for particle mass (PM), organic and elemental carbon (OC and EC), polycyclic aromatic hydrocarbons (PAH), soluble inorganic ions and elemental composition. Three main groups of compounds were discriminated in the tunnel aerosol: carbonaceous, soil component and vehicle mechanical wear. Measurements indicate that Cu can be a good tracer for wear emissions of road traffic. Cu levels correlate strongly with Fe, Mn, Sn and Cr, showing a highly linear constant ratio in all size ranges, suggesting a unique origin through sizes. Ratios of Cu with other elements can be used to source apportion the trace elements present in urban atmospheres, mainly on what concerns coarse aerosol particles. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We consider a fiber made of a soft elastic material, encased in a stiff elastic shell (core-shell geometry). If the core and shell dimensions are mismatched, e.g., because the core shrinks while the shell does not, but the two remain attached, then an elastic instability is triggered whereby wrinkles may appear on the shell. The wrinkle orientation may be longitudinal (along the fiber axis), polar (along the fiber perimeter), or a mixture of both, depending on the fiber's geometrical and material parameters. Here we investigate under what conditions longitudinal or polar wrinkling will occur.
Resumo:
The long term evolution (LTE) is one of the latest standards in the mobile communications market. To achieve its performance, LTE networks use several techniques, such as multi-carrier technique, multiple-input-multiple-output and cooperative communications. Inside cooperative communications, this paper focuses on the fixed relaying technique, presenting a way for determining the best position to deploy the relay station (RS), from a set of empirical good solutions, and also to quantify the associated performance gain using different cluster size configurations. The best RS position was obtained through realistic simulations, which set it as the middle of the cell's circumference arc. Additionally, it also confirmed that network's performance is improved when the number of RSs is increased. It was possible to conclude that, for each deployed RS, the percentage of area served by an RS increases about 10 %. Furthermore, the mean data rate in the cell has been increased by approximately 60 % through the use of RSs. Finally, a given scenario with a larger number of RSs, can experience the same performance as an equivalent scenario without RSs, but with higher reuse distance. This conduces to a compromise solution between RS installation and cluster size, in order to maximize capacity, as well as performance.
Resumo:
The reuse of waste fluid catalytic cracking (FCC) catalyst as partial surrogate for cement can reduce the environmental impact of both the oil-refinery and cement production industries [1,2]. FCC catalysts can be considered as pozzolanic materials since in the presence of water they tend to chemically react with calcium hydroxide to produce compounds possessing cementitious properties [3,4]. In addition, partial replacement of cement with FCC catalysts can enhance the performance of pastes and mortars, namely by improving their compressive strength [5,6]. In the present work the reaction of waste FCC catalyst with Ca(OH)2 has been investigated after a curing time of 28 days by scanning electron microscopy (SEM) with electron backscattered signal (BSE) combined with X-ray energy dispersive spectroscopy (EDS) carried out with a JEOL JSM 7001F instrument operated at 15 kV coupled to an INCA pentaFetx3 Oxford spectrometer. The polished cross-sections of FCC particles embedded in resin have also been evaluated by atomic force microscopy (AFM) in contact mode (CM) using a NanoSurf EasyScan 2 instrument. The SEM/EDS results revealed that an inward migration of Ca occurred during the reaction. A weaker outward migration of Si and Al was also apparent (Fig. 1). The migration of Ca was not homogeneous and tended to follow high-diffusivity paths within the porous waste FCC catalyst particles. The present study suggests that the porosity of waste FCC catalysts is key for the migration/reaction of Ca from the surrounding matrix, playing an important role in the pozzolanic activity of the system. The topography images and surface roughness parameters obtained by atomic force microscopy can be used to infer the local porosity in waste FCC catalyst particles (Fig. 2).
Resumo:
The capability to anticipate a contact with another device can greatly improve the performance and user satisfaction not only of mobile social network applications but of any other relying on some form of data harvesting or hoarding. One of the most promising approaches for contact prediction is to extrapolate from past experiences. This paper investigates the recurring contact patterns observed between groups of devices using an 8-year dataset of wireless access logs produced by more than 70000 devices. This effort permitted to model the probabilities of occurrence of a contact at a predefined date between groups of devices using a power law distribution that varies according to neighbourhood size and recurrence period. In the general case, the model can be used by applications that need to disseminate large datasets by groups of devices. As an example, the paper presents and evaluates an algorithm that provides daily contact predictions, based on the history of past pairwise contacts and their duration. Copyright © 2015 ICST.