6 resultados para Assay (16..-17..) -- Portraits

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O processamento de amostras citológicas em meio líquido e a coloração de May-Grünwald Giemsa (MGG) fazem parte da rotina em anatomia patológica. Na origem desta investigação esteve a possibilidade do uso desta coloração em amostras processadas em ThinPrep (TP). Estudou-se a fase compreendida entre o processamento de amostras em TP e a coloração com MGG – pós-processamento. O objetivo do estudo consistiu em avaliar diferentes métodos de pós-processamento em amostras de secreções brônquicas processadas pela metodologia TP e coradas com MGG. Utilizaram-se 32 amostras de secreções brônquicas, processadas em TP. De cada amostra obtiveram-se três lâminas, nas quais se aplicaram três métodos de pós-processamento: secagem ao ar; imersão em solução salina de tampão Tris; imersão em etanol a 96%. Realizou-se a coloração de MGG e as lâminas foram avaliadas por três avaliadores independentes, relativamente à constituição da amostra e qualidade da coloração. Este último parâmetro resultou da soma da pontuação obtida para os detalhes nuclear e citoplasmático (escala de 0 a 4 valores). Aplicaram-se os testes estatísticos One-Way ANOVA (p=0,05) e de Tukey. Para a qualidade de coloração, os métodos imersão em solução tampão, imersão em etanol a 96% e secagem ao ar obtiveram a pontuação média de 2,39 (s=1,309), 2,15 (s=1,248) e 1,22 (s=1,250), respetivamente. Verificou-se que existia diferença estatisticamente significativa entre o método secagem ao ar e os métodos imersão em solução tampão e em etanol a 96% (p=,000). O pós-processamento por secagem ao ar demonstrou qualidade da coloração não aceitável, ou seja pontuação média inferior a 2 valores. Pelo contrário, os pós-processamentos por imersão em solução tampão e em etanol a 96% apresentaram qualidade de coloração aceitável, podendo ser utilizados na rotina laboratorial para coloração com MGG de amostras processadas em TP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Formalina 10% Tamponada (FNT 10%) é considerada o fixador de eleição nos Laboratórios de Anatomia Patológica. Contudo, a exposição a esta substância acarreta riscos para a saúde dos técnicos. A International Agency for Research on Cancer (IARC) classificou-a como cancerígeno humano e estudos relevam uma correlação positiva entre a exposição a formaldeído e o desenvolvimento de leucemia e leucemia mielóide. Torna-se relevante alterar o processo de fixação substituindo a FNT 10% por outros fixadores melhorando estas questões. Como tal, desenvolveram-se fixadores à base de outros compostos químicos que não formaldeído, como o Fixador Molecular Universal (UMFIX) que tem como base metanol e polietilenoglicol e que é usualmente utilizado com um processador rápido de micro-ondas. Pretende-se comparar as diferenças entre a fixação por FNT 10% e a fixação por UMFIX, em tecido hepático processado em processador rápido de micro-ondas, para as colorações de Hematoxilina-Eosina (H&E), Tricrómio de Gomori, Reticulina e PAS, através da qualidade final das lâminas testadas. A coloração de H&E foi a única que apresentou diferenças estatisticamente significativas entre os dois fixadores (p=0,032; α<0,05; Mann-Whitney). O UMFIX apresenta-se como um substituto da FNT 10% para o processamento rápido em micro-ondas, pois além de apresentar lâminas com uma qualidade final semelhante ou superior às da FNT 10%, ultrapassa os riscos referidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introdução: Atualmente, o consumo abusivo de álcool nos jovens inicia-se precocemente. Todavia, os problemas de saúde e os comportamentos de risco associados podem ser prevenidos ou reduzidos através de programas escolares efetivos. Neste contexto, os Técnicos de Anatomia Patológica (TAP), podem contribuir para proporcionar conhecimentos que promovam estilos de vida saudáveis. Objetivos: Procurou-se perceber o papel do TAP na promoção de comportamentos saudáveis nos alunos de 9º ano dos Agrupamentos de Escolas da Portela e Moscavide e Visconde Juromenha e, posteriormente, como pode o reforço dos conhecimentos relacionados com o álcool potenciar a adoção de estilos de vida saudáveis. Métodos: Aferiram-se, através de questionário, as práticas de consumo, crenças relativas ao álcool e conhecimentos dos alunos sobre as repercussões no organismo. O questionário foi aplicado ao Grupo de Estudo (GE), após a ministração de uma ação de informação e esclarecimento (AIE), e ao Grupo de Controlo (GC), sem a participação na ação. Resultados e Discussão: Verificou-se um score médio de 48,8% para o GE e de 46,2% para o GC. A diferença entre GE e GC apenas foi estatisticamente significativa no Agrupamento de Escolas da Portela e Moscavide, onde a AIE conduziu a um aumento do nível de conhecimentos. Conclusões: A intervenção do TAP nas escolas permite, através de AIE’s com abordagens práticas, uma maior retenção de informação. Os conhecimentos teóricos aliados à prática permitem que os adolescentes desenvolvam uma perceção informada sobre os impactos do álcool na saúde contribuindo para determinar a adoção de estilos de vida saudáveis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A determinação imuno-histoquímica do status HER2 é um elemento fundamental para o diagnóstico, prognóstico e indicação terapêutica em carcinoma da mama. A inconsistência de resultados da técnica imuno-histoquímica levou ao estabelecimento, em alguns países, de recomendações para melhorar a performance do teste. Com o objetivo de criar recomendações adaptadas à realidade portuguesa, a área científica de Anatomia Patológica, Citológica e Tanatológica da Escola Superior de Tecnologia da Saúde de Lisboa e a Associação Portuguesa de Técnicos de Anatomia Patológica reuniram um painel de especialistas para a construção e estabelecimento de linhas de orientação técnica para a determinação do status HER2 em carcinoma da mama para a realidade portuguesa. O painel recomenda que o teste seja devidamente planeado do ponto de vista humano e material, com ênfase acentuado no controlo e garantia da qualidade de reagentes e procedimentos. A fase préanalítica é apontada como essencial para a qualidade do teste, nomeadamente um reduzido tempo de isquémia a frio, tempos mínimos de fixação de 6h para biópsias e 24h para peças cirúrgicas e máximo de 96h para ambas, bem como um controlo de qualidade de todos os reagentes utilizados. São estipulados critérios de seleção de controlos, bem como critérios de avaliação da qualidade da técnica, elementos fundamentais para se rastrear problemas na fase pós-analítica. Pretende-se com este documento melhorar a acuidade da determinação do status HER2 em carcinoma da mama, podendo selecionar doentes de modo mais adequado, bem como promover o debate e a investigação nesta área.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The legacy of nineteenth century social theory followed a “nationalist” model of society, assuming that analysis of social realities depends upon national boundaries, taking the nation-state as the primary unit of analysis, and developing the concept of methodological nationalism. This perspective regarded the nation-state as the natural - and even necessary - form of society in modernity. Thus, the constitution of large cities, at the end of the 19th century, through the intense flows of immigrants coming from diverse political and linguistic communities posed an enormous challenge to all social research. One of the most significant studies responding to this set of issues was The Immigrant Press and its Control, by Robert E. Park, one of the most prominent American sociologists of the first half of the 20th century. The Immigrant Press and its Control was part of a larger project entitled Americanization Studies: The Acculturation of Immigrant Group into American Society, funded by the Carnagie Corporation following World War I, taking as its goal to study the so-called “Americanization methods” during the 1920s. This paper revisits that particular work by Park to reveal how his detailed analysis of the role of the immigrant press overcame the limitations of methodological nationalism. By granting importance to language as a tool uniting each community and by showing how the strength of foreign languages expressed itself through the immigrant press, Park demonstrated that the latter produces a more ambivalent phenomenon than simply the assimilation of immigrants. On the one hand, the immigrant press served as a connecting force, driven by the desire to preserve the mother tongue and culture while at the same time awakening national sentiments that had, until then, remained diffuse. Yet, on the other hand, it facilitated the adjustment of immigrants to the American context. As a result, Park’s work contributes to our understanding of a particular liminal moment inherent within many intercultural contexts, the space between emigrant identity (emphasizing the country of origin) and immigrant identity (emphasizing the newly adopted country). His focus on the role played by media in the socialization of immigrant groups presaged later work on this subject by communication scholars. Focusing attention on Park’s research leads to other studies of the immigrant experience from the same period (e.g., Thomas & Znaniecki, The Polish Peasant in Europe and America), and also to insights on multi-presence and interculturality as significant but often overlooked phenomena in the study of immigrant socialization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.