21 resultados para Artificial Intelligence, Constraint Programming, set variables, representation

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os sistemas fotovoltaicos produzem energia eléctrica limpa, e inesgotável na nossa escala temporal. A Agência Internacional de Energia encara a tecnologia fotovoltaica como uma das mais promissoras, esperando nas suas previsões mais optimistas, que em 2050 possa representar 20% da produção eléctrica mundial, o equivalente a 18000 TWh. No entanto, e apesar do desenvolvimento notável nas últimas décadas, a principal condicionante a uma maior proliferação destes sistemas é o ainda elevado custo, aliado ao seu fraco desempenho global. Apesar do custo e ineficiência dos módulos fotovoltaicos ter vindo a diminuir, o rendimento dos sistemas contínua dependente de factores externos sujeitos a grande variabilidade, como a temperatura e a irradiância, e às limitações tecnológicas e falta de sinergia dos seus equipamentos constituintes. Neste sentido procurou-se como objectivo na elaboração desta dissertação, avaliar o potencial de optimização dos sistemas fotovoltaicos recorrendo a técnicas de modelação e simulação. Para o efeito, em primeiro lugar foram identificados os principais factores que condicionam o desempenho destes sistemas. Em segundo lugar, e como caso prático de estudo, procedeu-se à modelação de algumas configurações de sistemas fotovoltaicos, e respectivos componentes em ambiente MatlabTM/SimulinkTM. Em seguida procedeu-se à análise das principais vantagens e desvantagens da utilização de diversas ferramentas de modelação na optimização destes sistemas, assim como da incorporação de técnicas de inteligência artificial para responder aos novos desafios que esta tecnologia enfrentará no futuro. Através deste estudo, conclui-se que a modelação é não só um instrumento útil para a optimização dos actuais sistemas PV, como será, certamente uma ferramenta imprescindível para responder aos desafios das novas aplicações desta tecnologia. Neste último ponto as técnicas de modelação com recurso a inteligência artificial (IA) terão seguramente um papel preponderante. O caso prático de modelação realizado permitiu concluir que esta é igualmente uma ferramenta útil no apoio ao ensino e investigação. Contudo, convém não esquecer que um modelo é apenas uma aproximação à realidade, devendo recorrer-se sempre ao sentido crítico na interpretação dos seus resultados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the goals in the field of Music Information Retrieval is to obtain a measure of similarity between two musical recordings. Such a measure is at the core of automatic classification, query, and retrieval systems, which have become a necessity due to the ever increasing availability and size of musical databases. This paper proposes a method for calculating a similarity distance between two music signals. The method extracts a set of features from the audio recordings, models the features, and determines the distance between models. While further work is needed, preliminary results show that the proposed method has the potential to be used as a similarity measure for musical signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a two-stage stochastic programming approach for the development of optimal offering strategies for wind power producers. Uncertainty is related to electricity market prices and wind power production. A hybrid intelligent approach, combining wavelet transform, particle swarm optimization and adaptive-network-based fuzzy inference system, is used in this paper to generate plausible scenarios. Also, risk aversion is explicitly modeled using the conditional value-at-risk methodology. Results from a realistic case study, based on a wind farm in Portugal, are provided and analyzed. Finally, conclusions are duly drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide all agent; the capability to infer the relations (assertions) entailed by the rules that, describe the formal semantics of art RDFS knowledge-base. The proposed inferencing process formulates each semantic restriction as a rule implemented within a, SPARQL query statement. The process expands the original RDF graph into a fuller graph that. explicitly captures the rule's described semantics. The approach is currently being explored in order to support descriptions that follow the generic Semantic Web Rule Language. An experiment, using the Fire-Brigade domain, a small-scale knowledge-base, is adopted to illustrate the agent modeling method and the inferencing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos tempos actuais os equipamentos para Aquecimento Ventilação e Ar Condicionado (AVAC) ocupam um lugar de grande importância na concepção, desenvolvimento e manutenção de qualquer edifício por mais pequeno que este seja. Assim, surge a necessidade premente de racionalizar os consumos energéticos optimizando-os. A alta fiabilidade desejada nestes sistemas obriga-nos cada vez mais a descobrir formas de tornar a sua manutenção mais eficiente, pelo que é necessário prevenir de uma forma proactiva todas as falhas que possam prejudicar o bom desempenho destas instalações. Como tal, torna-se necessário detectar estas falhas/anomalias, sendo imprescíndivel que nos antecipemos a estes eventos prevendo o seu acontecimento num horizonte temporal pré-definido, permitindo actuar o mais cedo possível. É neste domínio que a presente dissertação tenta encontrar soluções para que a manutenção destes equipamentos aconteça de uma forma proactiva e o mais eficazmente possível. A ideia estruturante é a de tentar intervir ainda numa fase incipiente do problema, alterando o comportamento dos equipamentos monitorizados, de uma forma automática, com recursos a agentes inteligentes de diagnóstico de falhas. No caso em estudo tenta-se adaptar de forma automática o funcionamento de uma Unidade de Tratamento de Ar (UTA) aos desvios/anomalias detectadas, promovendo a paragem integral do sistema apenas como último recurso. A arquitectura aplicada baseia-se na utilização de técnicas de inteligência artificial, nomeadamente dos sistemas multiagente. O algoritmo utilizado e testado foi construído em Labview®, utilizando um kit de ferramentas de controlo inteligente para Labview®. O sistema proposto é validado através de um simulador com o qual se conseguem reproduzir as condições reais de funcionamento de uma UTA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the cooperative intelligent transport systems are part of a largest system. Transportations are modal operations integrated in logistics and, logistics is the main process of the supply chain management. The supply chain strategic management as a simultaneous local and global value chain is a collaborative/cooperative organization of stakeholders, many times in co-opetition, to perform a service to the customers respecting the time, place, price and quality levels. The transportation, like other logistics operations must add value, which is achieved in this case through compression lead times and order fulfillments. The complex supplier's network and the distribution channels must be efficient and the integral visibility (monitoring and tracing) of supply chain is a significant source of competitive advantage. Nowadays, the competition is not discussed between companies but among supply chains. This paper aims to evidence the current and emerging manufacturing and logistics system challenges as a new field of opportunities for the automation and control systems research community. Furthermore, the paper forecasts the use of radio frequency identification (RFID) technologies integrated into an information and communication technologies (ICT) framework based on distributed artificial intelligence (DAI) supported by a multi-agent system (MAS), as the most value advantage of supply chain management (SCM) in a cooperative intelligent logistics systems. Logistical platforms (production or distribution) as nodes of added value of supplying and distribution networks are proposed as critical points of the visibility of the inventory, where these technological needs are more evident.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Audiometer systems provide enormous amounts of detailed TV watching data. Several relevant and interdependent factors may influence TV viewers' behavior. In this work we focus on the time factor and derive Temporal Patterns of TV watching, based on panel data. Clustering base attributes are originated from 1440 binary minute-related attributes, capturing the TV watching status (watch/not watch). Since there are around 2500 panel viewers a data reduction procedure is first performed. K-Means algorithm is used to obtain daily clusters of viewers. Weekly patterns are then derived which rely on daily patterns. The obtained solutions are tested for consistency and stability. Temporal TV watching patterns provide new insights concerning Portuguese TV viewers' behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key aspect of decision-making in a disaster response scenario is the capability to evaluate multiple and simultaneously perceived goals. Current competing approaches to build decision-making agents are either mental-state based as BDI, or founded on decision-theoretic models as MDP. The BDI chooses heuristically among several goals and the MDP searches for a policy to achieve a specific goal. In this paper we develop a preferences model to decide among multiple simultaneous goals. We propose a pattern, which follows a decision-theoretic approach, to evaluate the expected causal effects of the observable and non-observable aspects that inform each decision. We focus on yes-or-no (i.e., pursue or ignore a goal) decisions and illustrate the proposal using the RoboCupRescue simulation environment.