16 resultados para Arsenic -- Toxicology
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Metal toxicology is one of the oldest areas of study of toxicology and one of the oldest environmental problems. Metals and metalloids are toxic elements at the top of the priority list of hazardous substances of the Agency for Toxic Substances and Disease Registry (ATSDR). However, several gaps of knowledge still exist that are related to their toxicity, mainly concerning the mechanisms of action. This special issue affords the opportunity to bring together the results of nine papers covering several aspects of the toxicology of metals and metalloids in in vitro and in vivo experimental models, as well as in exposed populations.
Resumo:
Formaldehyde, classified by the IARC as carcinogenic in humans and experimental animals, is a chemical agent that is widely used in histopathology laboratories. The exposure to this substance is epidemiologically linked to cancer and to nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it provides information on several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomere fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA.
The aim of this study is to compare the frequency of genotoxicity biomarkers, provided by the CBMN assay in peripheral lymphocytes and the MN test in buccal cells, between individuals occupationally exposed and non-exposed to formaldehyde and other environmental factors, namely tobacco and alcohol consumption.
The sample comprised two groups: 56 individuals occupationally exposed to formaldehyde (cases) and 85 unexposed individuals (controls), from whom both peripheral blood and exfoliated epithelial cells of the oral mucosa were collected in order to measure the genetic endpoints proposed in this study.
The mean level of TWA8h was 0.16±0.11ppm (
Resumo:
Formaldehyde (CH2O) the most simple and reactive of all aldehydes, is a colorless, reactive and readily polymerizing gas at normal temperature. It has a pungent, suffocating odour that is recognized by most human subjects at concentrations below 1 ppm. According to the Report on Carcinogens, formaldehyde (FA) ranks 25th in the overall U.S. chemical production with more than 11 billion pounds (5 million tons) produced each year. Is an important industrial compound that is used in the manufacture of synthetic resins and chemical compounds such as lubricants and adhesives. It has also applications as a disinfectant, preservative and is used in cosmetics. Estimates of the number of persons who are occupationally exposed to FA indicate that, at least at low levels, may occur in a wide variety of industries. The occupational settings with most extensive use of formaldehyde is in the production of resins and in anatomy and pathology laboratories. Several studies reported a carcinogenic effect in humans after inhalation of FA, in particular an increased risk for nasopharyngeal cancer. Nowadays, the International Agency for Research on Cancer (IARC) classifies FA as carcinogenic to humans (group 1), on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferatin cultured mammalian cells. A variety of evidence suggests that the primary DNA alterations after FA exposure are DNA-protein crosslinks (DPX). Incomplete repair of DPX can lead to the formation of mutations.
Resumo:
Formaldehyde (CH2O), the most simple and reactive of all aldehydes, is colorless, and readily polymerizing gas at normal temperature. The most extensive use is in production of resins and has an important application as a disinfectant and preservative, reason why relevant workplace exposure may also occur in pathology and anatomy laboratories and in mortuaries. A study was carried out in Portugal, in a formaldehyde production resins factory and in 10 pathology and anatomy laboratories. It was applied a risk assessment methodology based on Queensland University proposal that permitted to perform risk assessment for each activity developed in a work station. This methodology was applied in 83 different activities developed in the laboratories and in 18 activities of the factory. Also, Micronucleus Test was performed in lymphocytes from 30 factory workers and 50 laboratories workers.
Resumo:
Formaldehyde, also known as formalin, formal and methyl aldehydes, is a colorless, flammable, strong-smelling gas. It has an important application in embalming tissues and that result in exposures for workers in the pathology anatomy laboratories and mortuaries. To perform exposure assessment is necessary define exposure groups and in this occupational setting the technicians and pathologists are the most important groups. In the case of formaldehyde, it seems that health effects are more related with peak exposures than with exposure duration.
Resumo:
Formaldehyde (CH2O), the most simple and reactive aldehyde, is a colorless, reactive and readily polymerizing gas at room temperature (National Toxicology Program [NTP]. It has a pungent suffocating odor that is recognized by most human subjects at concentrations below 1 ppm. Aleksandr Butlerov synthesized the chemical in 1859, but it was August Wilhelm von Hofmann who identified it as the product formed from passing methanol and air over a heated platinum spiral in 1867. This method is still the basis for the industrial production of formaldehyde today, in which methanol is oxidized using a metal catalyst. By the early 20th century, with the explosion of knowledge in chemistry and physics, coupled with demands for more innovative synthetic products, the scene was set for the birth of a new material–plastics. According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Formaldehyde annual production rises up to 21 million tons worldwide and it has increased in China with 7.5 million tons produced in 2007. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Commercially, formaldehyde is manufactured as an aqueous solution called formalin, usually containing 37% by weight of dissolved formaldehyde. This chemical is present in all regions of the atmosphere arising from the oxidation of biogenic and anthropogenic hydrocarbons. Formaldehyde concentration levels range typically from 2 to 45 ppbV (parts per billion in a given volume) in urban settings that are mainly governed by primary emissions and secondary formation.
Resumo:
A test chamber was projected and built (according to ISO 16000-9 Standard) to simulate atmospheric conditions experienced by rubber infill (when applied in synthetic turf pitches) and measure accurately the airborne emissions of pollutants such as dusts and volatile organic compounds (VOC), as well as pollutants present in leachates. It should be pointed out that standard ISO 16000-9 is only concerned with the determination of the emission of VOC from building products and furnishing (not specific of synthetic turf materials), whereas other standards are concerned with the emission of leachates only. This procedure is to be considered as a technical option to the lysimeter "global turf system evaluation" when the rubber infill alone is to be evaluated. The advantage of the proposed option considering this "test chamber" is its simplicity and economy. This test chamber is actually installed and being used for tests in LAIST.
Resumo:
Mestrado em Segurança e Higiene do Trabalho.
Resumo:
This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm 3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.
Resumo:
The use of cytostatics drugs in anticancer therapy is increasing. Health care workers can be occupationally exposed to these drugs classified as carcinogenic, mutagenic or teratogenic. Cytostatics drugs are a heterogeneous group of chemicals widely used in the treatment of cancer, nevertheless have been proved to be also mutagens, carcinogens and teratogens. Workers may be exposed to this drug, being in the hospital settings the main focus dwelled upon the pharmacy, and nursing personnel. Alkaline comet assay is one of the most promising short-term genotoxicity assays for human risk assessment, being recommended to monitor populations chronically exposed to genotoxic agents. DNA glycosylase (OGG1) represents the main mechanism of protecting the integrity of the human DNA with respect to 8-OHdG, the most well studied biomarker of oxidative damage.
Resumo:
According to numerous studies, airborne nanoparticles have a potential to produce serious adverse human health effects when deposited into the respiratory tract. The most important parts of the lung are the alveolar regions with their enormous surface areas and potential to transfer nanoparticles into the blood stream. These effects may be potentiated in case of the elderly, since this population is more susceptible to air pollutants in general and more to nanoparticles than larger particles. The main goal of this investigation was to determine the exposure of institutionalized elders to nanoparticles using Nanoparticle Surface Area Monitor (NSAM) equipment to calculate the deposited surface area (DSA) of nanoparticles into elderly lungs. In total, 193 institutionalized individuals over 65 yr of age were examined in four elderly care centers (ECC). The occupancy daily pattern was achieved by applying a questionnaire, and it was concluded that these subjects spent most of their time indoors, including the bedroom and living room, the indoor microenvironments with higher prevalence of elderly occupancy. The deposited surface area ranged from 10 to 46 mu m(2)/cm(3). The living rooms presented significantly higher levels compared with bedrooms. Comparing PM10 concentrations with nanoparticles deposited surface area in elderly lungs, it is conceivable that living rooms presented the highest concentration of PM10 and were similar to the highest average DSA. The temporal distribution of DSA was also assessed. While data showed a quantitative fluctuation in values in bedrooms, high peaks were detected in living rooms.
Resumo:
Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.
Resumo:
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.
Resumo:
The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 mu m(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.