12 resultados para Array antennas

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The urgent need to mitigate traffic problems such as accidents, road hazards, pollution and traffic jam have strongly driven the development of vehicular communications. DSRC (Dedicated Short Range Communications) is the technology of choice in vehicular communications, enabling real time information exchange among vehicles V2V (Vehicle-to-Vehicle) and between vehicles and infrastructure V2I (Vehicle-Infrastructure). This paper presents a receiving antenna for a single lane DSRC control unit. The antenna is a non-uniform array with five microstrip patches. The obtained beam width, bandwidth and circular polarization quality, among other characteristics, are compatible with the DSRC standards, making this antenna suitable for this application. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless communications are widely used for various applications, requiring antennas with different features. Often, to achieve the desired radiation pattern, is necessary to employ antenna arrays, using non-uniform excitation on its elements. Power dividers can be used and the best known are the T-junction and the Wilkinson power divider, whose main advantage is the isolation between output ports. In this paper the impact of this isolation on the overall performance of a circularly polarized planar antenna array using non-uniform excitation is investigated. Results show a huge decrease of the array bandwidths either in terms of return loss or in polarization, without resistors. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless networks have joined to the sports venues, offering to the public a set of facilities, such as the access to email, news, and also to use the social networking, uploading their photos. New challenges have emerged to provide Wi-Fi in this densely populated stadiums, such as increasing capacity and coverage. In this article, an access point antenna array to cover a sector of a stadium is presented. Its structure, designed in a low cost material allows to reduce the total manufacturing costs, an important factor due to the large number of antennas required in these venues. The material characteristic, the broad bandwidth of operation (300 MHz), along with to the low side lobe levels, important to reduce interference between sectors, makes this antenna well-positioned for wireless communications in these particular locals. (c) 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:2037-2041, 2015.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless communications had a great development in the last years and nowadays they are present everywhere, public and private, being increasingly used for different applications. Their application in the business of sports events as a means to improve the experience of the fans at the games is becoming essential, such as sharing messages and multimedia material on social networks. In the stadiums, given the high density of people, the wireless networks require very large data capacity. Hence radio coverage employing many small sized sectors is unavoidable. In this paper, an antenna is designed to operate in the Wi-Fi 5GHz frequency band, with a directive radiation pattern suitable to this kind of applications. Furthermore, despite the large bandwidth and low losses, this antenna has been developed using low cost, off-the-shelf materials without sacrificing quality or performance, essential to mass production. © 2015 EurAAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoor localization systems in nowadays is a huge area of interest not only at academic but also at industry and commercial level. The correct location in these systems is strongly influenced by antennas performance which can provide several gains, bandwidths, polarizations and radiation patterns, due to large variety of antennas types and formats. This paper presents the design, manufacture and measurement of a compact microstrip antenna, for a 2.4 GHZ frequency band, enhanced with the use of Electromagnetic Band-Gap (EBG) structures, which improve the electromagnetic behavior of the conventional antennas. The microstrip antenna with an EBG structure integrated allows an improvement of the location system performance in about 25% to 30% relatively to a conventional microstrip antenna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dedicated Short Range Communications (DSRC) is the key enabling technology for the present and future vehicular communication for various applications, such as safety improvement and traffic jam mitigation. This paper describes the development of a microstrip antenna array for the roadside equipment of a DSRC system, whose characteristics are according with the vehicular communications standards. The proposed antenna, with circular polarization, has a wide bandwidth, enough to cover the current European DSRC 5.8 GHz band and the future 5.9 GHz band for next generation DSRC communications. (C) 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53: 2794-2796, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26394

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the application of active components into antennas these became a source of distortion on wireless communication systems. In this paper we explore the nonlinear effects occurring in a frequency reconfigurable antenna operating with a PIN Diode. We describe the measurement setup used to check the antenna intermodulation products and the measured compression and third order intermodulation limitations of a frequency reconfigurable antenna, operating at the UMTS and WLAN frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a review of antennas applied for indoor positioning or localization systems. The desired requirements of those antennas when integrated in anchor nodes (reference nodes) are discussed, according to different localization techniques and their performance. The described antennas will be subdivided into the following sections according to the nature of measurements: received signal strength (RSS), time of flight (ToF), and direction of arrival (DoA). This paper intends to provide a useful guide for antenna designers who are interested in developing suitable antennas for indoor localization systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adaptive antenna array combines the signal of each element, using some constraints to produce the radiation pattern of the antenna, while maximizing the performance of the system. Direction of arrival (DOA) algorithms are applied to determine the directions of impinging signals, whereas beamforming techniques are employed to determine the appropriate weights for the array elements, to create the desired pattern. In this paper, a detailed analysis of both categories of algorithms is made, when a planar antenna array is used. Several simulation results show that it is possible to point an antenna array in a desired direction based on the DOA estimation and on the beamforming algorithms. A comparison of the performance in terms of runtime and accuracy of the used algorithms is made. These characteristics are dependent on the SNR of the incoming signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações