2 resultados para Aq-29
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Filamentous fungi from genus Aspergillus were previously detected in wastewater treatment plants (WWTP) as being Aspergillus flavus (A. flavus), an important toxigenic fungus producing aflatoxins. This study aimed to determine occupational exposure adverse effects due to fungal contamination produced by A. flavus complex in two Portuguese WWTP using conventional and molecular methodologies. Air samples from two WWTP were collected at 1 m height through impaction method. Surface samples were collected by swabbing surfaces of the same indoor sites. After counting A. flavus and identification, detection of aflatoxin production was ensured through inoculation of seven inoculates in coconut-milk agar. Plates were examined under long-wave ultraviolet (UV; 365 nm) illumination to search for the presence of fluorescence in the growing colonies. To apply molecular methods, air samples were also collected using the impinger method. Samples were collected and collection liquid was subsequently used for DNA extraction. Molecular identification of A. flavus was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR detection system (Corbett). Among the Aspergillus genus, the species that were more abundant in air samples from both WWTP were Aspergillus versicolor (38%), Aspergillus candidus (29.1%), and Aspergillus sydowii (12.7%). However, the most commonly species found on surfaces were A. flavus (47.3%), Aspergillus fumigatus (34.4%), and Aspergillus sydowii (10.8%). Aspergillus flavus isolates that were inoculated in coconut agar medium were not identified as toxigenic strains and were not detected by RT-PCR in any of the analyzed samples from both plants. Data in this study indicate the need for monitoring fungal contamination in this setting. Although toxigenic strains were not detected from A. flavus complex, one cannot disregard the eventual presence and potential toxicity of aflatoxins.
Resumo:
High loads of fungi have been reported in different types of waste management plants. This study intends to assess fungal contamination in one waste-sorting plant before and after cleaning procedures in order to analyze their effectiveness. Air samples of 50 L were collected through an impaction method, while surface samples, taken at the same time, were collected by the swabbing method and subject to further macro- and microscopic observations. In addition, we collected air samples of 250 L using the impinger Coriolis μ air sampler (Bertin Technologies) at 300 L/min airflow rate in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely Aspergillus fumigatus and Aspergillus flavus complexes, as well as Stachybotrys chartarum species. Fungal quantification in the air ranged from 180 to 5,280 CFU m−3 before cleaning and from 220 to 2,460 CFU m−3 after cleaning procedures. Surfaces presented results that ranged from 29 × 104 to 109 × 104 CFU m−2 before cleaning and from 11 × 104 to 89 × 104 CFU m−2 after cleaning. Statistically significant differences regarding fungal load were not detected between before and after cleaning procedures. Toxigenic strains from A. flavus complex and S. chartarum were not detected by qPCR. Conversely, the A. fumigatus species was successfully detected by qPCR and interestingly it was amplified in two samples where no detection by conventional methods was observed. Overall, these results reveal the inefficacy of the cleaning procedures and that it is important to determine fungal burden in order to carry out risk assessment.