3 resultados para Antineoplastic drug

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: The raising frequency of cancer diseases is leading to a widespread application of antineoplastic drugs, thus increasing the probability of workplace surfaces contamination. Most of these drugs are classified by the International Agency for Research on Cancer as known or suspected human carcinogens. Skin absorption is the main route for antineoplastic drugs exposure in occupational settings, therefore cleaning protocols have paramount influence in surfaces contamination and, consequently, in exposure. The aim of this study was to assess surfaces contamination in a Portuguese chemotherapy unit before and during drug administration, in both preparation and administration facilities. Methods: Samples were collected by wipe-sampling from potentially contaminated surfaces selected by previous protocol observation. Samples were analyzed by HPLCDAD. Cyclophosphamide (CP), 5-fluorouracil (5FU), and paclitaxel (PTX) were used as surrogate markers for surfaces contamination for all cytotoxic drugs. Results: From the 34 samples collected before any preparation and administration activities, 41.2% were contaminated with 5-FU (4.0-84.7 ng/cm2) and 23.5% of the samples were contaminated with CP (19.8-139.6 μg/cm2). Only 2 samples presented contamination by PTX (5.9%) with a maximum value of 3.7 ng/cm2. Of the 37 samples collected during preparation and administration of antineoplastic drugs, 48.7% were contaminated with 5-FU (1.9-88.7 ng/cm2) and 24.3% with CP (12.0-93.9 μg/cm2). None of the samples showed contamination with PTX. Discussion: Data showed differences in contamination levels before and after the handling of antineoplastic drugs in preparation and in administration settings. These results point out the importance of cleaning procedures. This is well in accordance to previous studies that showed how the type of cleaning procedures and products used can be determinant for surfaces decontamination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Task-based approach implicates identifying all the tasks developed in each workplace aiming to refine the exposure characterization. The starting point of this approach is the recognition that only through a more detailed and comprehensive understanding of tasks is possible to understand, in more detail, the exposure scenario. In addition allows also the most suitable risk management measures identification. This approach can be also used when there is a need of identifying the workplace surfaces for sampling chemicals that have the dermal exposure route as the most important. In this case is possible to identify, through detail observation of tasks performance, the surfaces that involves higher contact (frequency) by the workers and can be contaminated. Identify the surfaces to sample when performing occupational exposure assessment to antineoplasic agents. Surfaces selection done based on the task-based approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Risk assessment considerations - The concept that “safe levels of exposure” for humans can be identified for individual chemicals is central to the risk assessment of compounds with known toxicological profiles. Selection of agents for combination chemotherapy regimens involves minimize overlapping of mechanisms of action, antitumor activity and toxicity profile. Although the toxicological profile and mechanism of action of each individual drug is well characterized, the toxicological interactions between drugs are likely, but poorly established at occupational exposure context. The synergistic nature of interactions may help in understanding the adverse health effects observed in healthcare workers, where exposure situations are characterized by complex mixtures of chemical agents, and the levels of individual exposing agents are often not sufficiently high to explain the health complaints. However, if a substance is a genotoxic carcinogen, this would be the “lead effect”; normally, no OEL based on a NOEL would be derived and the level would be set so low that it would be unlikely that other effects would be expected. Aim of the study - Recently research project developed in Portuguese Hospitals characterize the occupational exposure to antineoplastic agents and the health effects related. The project aimed to assess exposure of the different risk groups that handle antineoplastic agents in the hospital setting, namely during preparation and administration of these drugs. Here it is presented and discussed the results in a study developed in two hospitals from Lisbon.