7 resultados para Anomalous
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The scaling exponent of 1.6 between anomalous Hall and longitudinal conductivity, characteristic of the universal Hall mechanism in dirty-metal ferromagnets, emerges from a series of CrO2 films as we systematically increase structural disorder. Magnetic disorder in CrO2 increases with temperature and this drives a separate topological Hall mechanism. We find that these terms are controlled discretely by structural and magnetic defect populations, and their coexistence leads to apparent divergence from exponent 1.6, suggesting that the universal term is more prevalent than previously realized.
Resumo:
The origin of the Cretaceous-Paleogene boundary (KPB) mass extinction is still the center of acrimonious debates by opposing partisans of the bolide impact theory to those who favored a terrestrial origin linked to the Deccan Traps volcanism. Here we apply an original and high-resolution environmental magnetic study of the reference Bidart section, France. Our results show that the KPB is identified by an abrupt positive shift of the magnetic susceptibility (MS), also observed by others at the KPB elsewhere. In addition, an anomalous interval of very low MS, carried by an unknown Cl-bearing iron oxide similar to specular hematite, is depicted just below the KPB. Grain-size and morphology of the Cl-iron oxide are typically in the range of hematitic dust currently transported by winds from Sahara to Europe. This discovery is confirmed in the referenced Gubbio section (Italy) suggesting a global scale phenomenon. As a conjecture we suggest an origin by heterogeneous reaction between HCl-rich volcanic gas and liquid-solid aerosols within buoyant atmospheric plumes formed above the newly emitted Deccan flood basalts. Based on this hypothesis, our discovery provides a new benchmark for the Deccan volcanism and witnesses the nature and importance of the related atmospheric change.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Edificações
Resumo:
We have conducted a P and S receiver functions [PRFs and SRFs] analysis for 19 seismic stations on the Iberia and western Mediterranean. In the transition zone [TZ] the PRFs analysis reveals a band [from Gibraltar to Balearic] increased by 10-20 km relative to the standard 250 km. The TZ thickness variations are strongly correlated with the P660s times in PRFs. We interpret the variable depth of the 660-km discontinuity as an effect of subduction. Over the anomalous TZ we found a reduced velocity zone in the upper mantle. Joint inversion of PRFs and SRFs reveals a subcrustal high S velocity lid and an underlying LVZ. A reduction of the S velocity in the LVZ is less than 10%. The Gutenberg discontinuity is located at 65±5 km, but in several models sampling the Mediterranean, the lid is missing or its thickness is reduced to ~30 km. In the Gibraltar and North Africa this boundary is located at ~100 km. The lid Vp/Vs beneath Betics is reduced relative to the standard 1.8. Another evidence of the Vp/Vs anomaly is provided by S410p phase late arrivals in the SRFs. The azimuthal anisotropy analysis with a new technology was conducted at 5 stations and at 2 groups of stations. The fast direction in the uppermost mantle layer is ~90º in Iberian Massif. In Balearic is in the azimuth of ~120º. At a depth of ~60 km the direction becomes 90º. Anisotropy in the upper layer can be interpreted as frozen, whereas anisotropy in the lower layer is active, corresponding to the present-day or recent flow. The effect of the asthenosphere in the SKS splitting is much larger than the effect of the subcrustal lithosphere.
Resumo:
The conjugate margins system of the Gulf of Lion and West Sardinia (GLWS) represents a unique natural laboratory for addressing fundamental questions about rifting due to its landlocked situation, its youth, its thick sedimentary layers, including prominent palaeo-marker such as the MSC event, and the amount of available data and multidisciplinary studies. The main goals of the SARDINIA experiment, were to (i) investigate the deep structure of the entire system within the two conjugate margins: the Gulf of Lion and West Sardinia, (ii) characterize the nature of the crust, and (iii) define the geometry of the basin and provide important constrains on its genesis. This paper presents the results of P-wave velocity modelling on three coincident near-vertical reflection multi-channel seismic (MCS) and wide-angle seismic profiles acquired in the Gulf of Lion, to a depth of 35 km. A companion paper [part II Afilhado et al., 2015] addresses the results of two other SARDINIA profiles located on the oriental conjugate West Sardinian margin. Forward wide-angle modelling of both data sets confirms that the margin is characterised by three distinct domains following the onshore unthinned, 33 km-thick continental crust domain: Domain I is bounded by two necking zones, where the crust thins respectively from 30 to 20 and from 20 to 7 km over a width of about 170 km; the outermost necking is imprinted by the well-known T-reflector at its crustal base; Domain II is characterised by a 7 km-thick crust with anomalous velocities ranging from 6 to 7.5 km/s; it represents the transition between the thinned continental crust (Domain I) and a very thin (only 4-5 km) "atypical" oceanic crust (Domain III). In Domain II, the hypothesis of the presence of exhumed mantle is falsified by our results: this domain may likely consist of a thin exhumed lower continental crust overlying a heterogeneous, intruded lower layer. Moreover, despite the difference in their magnetic signatures, Domains II and III present the very similar seismic velocities profiles, and we discuss the possibility of a connection between these two different domains.
Resumo:
The structure and nature of the crust underlying the Santos Basin-São Paulo Plateau System (SSPS), in the SE Brazilian margin, are discussed based on five wide-angle seismic profiles acquired during the Santos Basin (SanBa) experiment in 2011. Velocity models allow us to precisely divide the SSPS in six domains from unthinned continental crust (Domain CC) to normal oceanic crust (Domain OC). A seventh domain (Domain D), a triangular shape region in the SE of the SSPS, is discussed by Klingelhoefer et al. (2014). Beneath the continental shelf, a similar to 100km wide necking zone (Domain N) is imaged where the continental crust thins abruptly from similar to 40km to less than 15km. Toward the ocean, most of the SSPS (Domains A and C) shows velocity ranges, velocity gradients, and a Moho interface characteristic of the thinned continental crust. The central domain (Domain B) has, however, a very heterogeneous structure. While its southwestern part still exhibits extremely thinned (7km) continental crust, its northeastern part depicts a 2-4km thick upper layer (6.0-6.5km/s) overlying an anomalous velocity layer (7.0-7.8km/s) and no evidence of a Moho interface. This structure is interpreted as atypical oceanic crust, exhumed lower crust, or upper continental crust intruded by mafic material, overlying either altered mantle in the first two cases or intruded lower continental crust in the last case. The deep structure and v-shaped segmentation of the SSPS confirm that an initial episode of rifting occurred there obliquely to the general opening direction of the South Atlantic Central Segment.
Resumo:
In this work, we present results from teleseismic P-wave receiver functions (PRFs) obtained in Portugal, Western Iberia. A dense seismic station deployment conducted between 2010 and 2012, in the scope of the WILAS project and covering the entire country, allowed the most spatially extensive probing on the bulk crustal seismic properties of Portugal up to date. The application of the H-κ stacking algorithm to the PRFs enabled us to estimate the crustal thickness (H) and the average crustal ratio of the P- and S-waves velocities V p/V s (κ) for the region. Observations of Moho conversions indicate that this interface is relatively smooth with the crustal thickness ranging between 24 and 34 km, with an average of 30 km. The highest V p/V s values are found on the Mesozoic-Cenozoic crust beneath the western and southern coastal domain of Portugal, whereas the lowest values correspond to Palaeozoic crust underlying the remaining part of the subject area. An average V p/V s is found to be 1.72, ranging 1.63-1.86 across the study area, indicating a predominantly felsic composition. Overall, we systematically observe a decrease of V p/V s with increasing crustal thickness. Taken as a whole, our results indicate a clear distinction between the geological zones of the Variscan Iberian Massif in Portugal, the overall shape of the anomalies conditioned by the shape of the Ibero-Armorican Arc, and associated Late Paleozoic suture zones, and the Meso-Cenozoic basin associated with Atlantic rifting stages. Thickened crust (30-34 km) across the studied region may be inherited from continental collision during the Paleozoic Variscan orogeny. An anomalous crustal thinning to around 28 km is observed beneath the central part of the Central Iberian Zone and the eastern part of South Portuguese Zone.