5 resultados para Anatase and rutile
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Oxide based diluted magnetic semiconductor (DMS) materials have been a subject of increasing interest due to reports of room temperature ferromagnetism in several systems and their potential use in the development of spintronic devices. However, concerns on the stability of the magnetic properties of different DMS systems have been raised. Their magnetic moment is often unstable, vanishing with a characteristic decay time of weeks or months, which precludes the development of real applications. This paper reports on the ferromagnetic properties of two-year-aged Ti1-xCoxO2-δ reduced anatase nanopowders with different Co contents (0.03≤x≤0.10). Aged samples retain rather high values of magnetization, remanence and coercivity which provide strong evidence for a quite preserved long-range ferromagnetic order. In what concern Co segregation, some degree of metastability of the diluted Co doped anatase structure could be inferred in the case of the sample with the higher Co content.
Resumo:
This letter reports on the magnetic properties of Ti(1-x)Co(x)O(2) anatase phase nanopowders with different Co contents. It is shown that oxygen vacancies play an important role in promoting long-range ferromagnetic order in the material studied in addition to the transition-metal doping. Furthermore, the results allow ruling out the premise of a strict connection between Co clustering and the ferromagnetism observed in the Co:TiO(2) anatase system.
Resumo:
The magnetic and electrical properties of Ni implanted single crystalline TiO2 rutile were studied for nominal implanted fluences between 0.5 x 10(17) cm(-2) and 2.0 x 10(17) cm(-2) with 150 keV energy, corresponding to maximum atomic concentrations between 9 at% and 27 at% at 65 nm depth, in order to study the formation of metallic oriented aggregates. The results indicate that the as implanted crystals exhibit superparamagnetic behavior for the two higher fluences, which is attributed to the formation of nanosized nickel clusters with an average size related with the implanted concentration, while only paramagnetic behavior is observed for the lowest fluence. Annealing at 1073 K induces the aggregation of the implanted nickel and enhances the magnetization in all samples. The associated anisotropic behavior indicates preferred orientations of the nickel aggregates in the rutile lattice consistent with Rutherford backscattering spectrometry-channelling results. Electrical conductivity displays anisotropic behavior but no magnetoresistive effects were detected. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001)Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate temperature at as low as 310 degrees C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison with the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films' phase composition, increasing with the increase of the Urbach energy for increasing rutile content. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This article reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160 degrees C and 24 h. A band gap of 3.06 +/- 0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 min of irradiation of a 10 ppm dye aqueous solution and 1 g L-1 of TNS catalyst.